

AUSTRALIAN GEOMAGNETISM REPORT 2002

Australian Government Geoscience Australia

MAGNETIC OBSERVATORIES VOLUME 50

www.ga.gov.au • GEOSCIENCE AUSTRALIA • www.ga.gov.au

Department of Industry, Tourism and Resources

Minister for Industry, Tourism & Resources:The Hon. Ian MacfarlaneParliamentary Secretary:The Hon. Warren EntschDepartment Secretary:Mark Paterson

Geoscience Australia

Chief Executive Officer: Neil Williams

Geohazards Division

Chief of Division: Wally Johnson

Australian Geomagnetism Report 2002

Volume 50

Geomagnetism Section Geoscience Australia Earth Monitoring Geoscience Australia G.P.O. Box 378 Canberra, A.C.T., 2601 AUSTRALIA

Australian Government

Geoscience Australia

Magnetic results for 2002

Alice Springs

Canberra

Charters Towers

Gnangara

Kakadu

Learmonth

Macquarie Island

Mawson

Casey

- & -

Australian Repeat Station Network

Compiled and edited by P.A. Hopgood with contributions by A.M. Lewis, P.G. Crosthwaite, Liejun Wang and N. Bartzis

Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore you should not rely solely on this information when making a commercial decision.

This work is copyright. Apart from any fair dealings for the purposes of study, research, criticism or review, as permitted under the Copyright Act, no part may be reproduced by any process without written permission. Inquiries should be directed to the Communications Unit, Geoscience Australia, GPO Box 378, Canberra City, ACT 2601.

ISSN: 1447-5146 (Online format) ISSN: 1035-1515 (Printed format)

© Copyright Commonwealth of Australia 2004

(Released: 24 August 2004)

During 2002 Geoscience Australia operated geomagnetic observatories at Alice Springs and Kakadu in the Northern Territory, Canberra in the Australian Capital Territory, Charters Towers in Queensland, Gnangara and Learmonth in Western Australia, Macquarie Island, Tasmania, in the sub-Antarctic, and Mawson and Casey in the Australian Antarctic Territory.

The operations at Macquarie Island and Casey were the joint responsibility of the Australian Antarctic Division of the Commonwealth Department of the Environment and Heritage and GA. Operations at Mawson were the joint responsibility of the Australian Bureau of Meteorology of the Commonwealth Department of the Environment and Heritage and GA.

The absolute magnetometers in routine service at the Canberra Magnetic Observatory also serve as the Australian standards. The calibration of these instruments can be traced to International Standards. Absolute magnetometers at all the other Australian observatories are standardised against those at Canberra

Magnetic mean value data at resolutions of 1-minute and 1-hour were provided to the World Data Centres for Geomagnetism at Boulder, USA (WDC-A) and at Copenhagen, Denmark (WDC-C1), as well as to INTERMAGNET. K indices, principal magnetic storms and rapid variations were hand-scaled for the Canberra and Gnangara observatories, and provided regularly to the International Service of Geomagnetic Indices. K indices were digitally scaled at the Mawson observatory.

K indices from Canberra contributed to the southern hemisphere Ks index and the global Kp, am and aa indices, while those from Gnangara contributed to the global am index.

Eleven repeat stations were re-occupied in 2002 during two field surveys, the first in April-May and the second in November.

To assist the geomagnetism program in Indonesia, data were routinely received from the Tangerang and Tondano observatories for processing. These observatories were most recently upgraded by GA's Geomagnetism personnel in 2001 under an AusAID grant that also included the purchase of instrumentation and the training of staff from Indonesia's BMG.

This report describes instrumentation and activities, and presents monthly and annual mean magnetic values, plots of hourly mean magnetic values and K indices at the magnetic observatories and repeat stations operated by GA during calendar year 2002.

ACRONYMS and ABBREVIATIONS

AAD	Australian Antarctic Division
ACRES	Australian Centre for Remote Sensing
ACT	Australian Capital Territory
A/D	Analogue to Digital (data conversion)
ADAM	Data acquisition module produced by Advantech Co. Ltd.
AGR	Australian Geomagnetism Report
AGRF	Australian Geomagnetic Reference Field
AGSO	Australian Geological Survey Organisation (formerly BMR)
AMO	Automatic Magnetic Observatory
ANARE	Australian National Antarctic Research Expedition
ANARESAT	ANARE satellite (communication)
ASP	 Alice Springs (Magnetic Observatory) Atmospheric & Space Physics (a program of the AAD)
AusAID	Australian Agency for International Development
BGS	British Geological Survey (Edinburgh)
BMR	Bureau of Mineral Resources, Geology, and Geophysics (Now Geoscience Australia)
BMG	Badan Meteorologi dan Geofisika (Indonesia)
BoM	(Australian) Bureau of Meteorology
CD-ROM	Compact Disk - Read Only Memory
CNB	Canberra (Magnetic Observatory)
CODATA	Committee on Data for Science and Technology
CSIRO	Commonwealth Scientific and Industrial Research Organisation
CSY	Casey (Variation Station)
СТА	Charters Towers (Magnetic Observatory)
D	Magnetic Declination (variation)
DC	Direct Current
DEH	Department of the Environment and Heritage
DIM	Declination & Inclination Magnetometer (D,I-fluxgate magnetometer)
DMI	Danish Meteorological Institute
DOS	Disk operating system (for the PC)
DVS	Davis (Variation Station)
EDA	EDA Instruments Inc., Canada
e-mail	electronic mail
F	Total magnetic intensity
ftp	file transfer protocol
GA	Geoscience Australia
GIN	Geomagnetic Information Node
GNA	Gnangara (Magnetic Observatory)
GPS	Global Positioning System
GSM	GEM Systems magnetometer
Н	Horizontal magnetic intensity
HDD	Hard disk drive (in a PC)

T	Magnetic Inclination (dip)
INTER-	International Real-time Magnetic
MAGNET	observatory Network
IAGA	International Association of Geomagnetism and Aeronomy
IBM	International Business Machines
IGRF	International Geomagnetic Reference Field
IGY	International Geophysical Year (1957-58)
IPGP	Institute de Physique du Globe de Paris
IPS	IPS Radio & Space Services (formerly the Ionospheric Prediction Service)
ISGI	International Service of Geomagnetic Indices
Κ	kennziffer (German: logarithmic index; code no.) Index of geomagnetic activity.
KDU	Kakadu, N.T. (Magnetic Observatory)
LRM	Learmonth, W.A. (Magnetic Obsv'ty)
LSO	Learmonth Solar Observatory
mA	milli-Amperes
MAW	Mawson (Magnetic Observatory)
MCQ	Macquarie Is. (Magnetic Observatory)
MGO	Mundaring Geophysical Observatory
MNS	Magnetometer Nuclear Survey (PPM)
nT	nanoTesla
N.T.	Northern Territory
OIC	Officer in Charge
PC	Personal Computer (IBM-compatible)
PGR	Proton Gyromagnetic Ratio
PPM	Proton Procession Magnetometer
PVC	poly-vinyl chloride (plastic)
PVM	Proton Vector Magnetometer
QHM	Quartz Horizontal Magnetometer
Qld.	Queensland
RCF	Ring-core fluxgate (magnetometer)
SC	Sudden (storm) commencement
sfe	Solar flare effect
SSC	Sudden storm commencement
Tas.	Tasmania
UPS	Uninterruptible Power Supply
UT/UTC	Universal Time Coordinated
W.A.	Western Australia
WDC	World Data Centre
WWW	World Wide Web (Internet)
Х	North magnetic intensity
Y	East magnetic intensity
Ζ	Vertical magnetic intensity

SUMMARYIII
ACRONYMS AND ABBREVIATIONSIV
CONTENTS V
Part 1
ACTIVITIES & SERVICES1
GEOMAGNETIC OBSERVATORIES
INTERMAGNET 1
INTERMAGNET 1 ØRSTED SATELLITE SUPPORT 1 STORMS & RAPID VARIATIONS 2 INDICES OF MAGNETIC DISTURBANCE 2 DISTRIBUTION OF MEAN MAGNETIC VALUES 2 AUSTRALIAN GEOMAGNETISM REPORT SERIES 2 WORLD WIDE WEB 2
INSTRUMENTATION
INTERVALS OF RECORDING AND MEAN VALUES
MAGNETIC OBSERVATORIES 6
AUSTRALIAN MAGNETIC OBSERVATORIES, 20026
ALICE SPRINGS OBSERVATORY
VARIOMETERS7ABSOLUTE INSTRUMENTS AND CORRECTIONS7BASELINES7ALICE SPRINGS ANNUAL MEAN VALUES7OPERATIONS8SIGNIFICANT EVENTS 2002 - ASP8DISTRIBUTION OF ASP DATA DURING 20028MONTHLY & ANNUAL MEAN VALUES9HOURLY MEAN VALUES9ASP – DATA LOSSES IN 200216
CANBERRA OBSERVATORY 16
VARIOMETERS16ABSOLUTE INSTRUMENTS AND CORRECTIONS16BASELINES16OPERATIONS17SIGNIFICANT EVENTS, CNB 200217K INDICES17CNB DATA LOSSES IN 200217

CANBERRA OBSERVATORY (CONT.)

DISTRIBUTION OF CNB DATA DURING 2002 CANBERRA ANNUAL MEAN VALUES CANBERRA 2002 – PRINCIPAL MAGNETIC STORMS CNB 2002 – RAPID VARIATION PHENOMENA Sudden Storm Commencements (ssc) Solar Flare Effects (sfe) MONTHLY & ANNUAL MEAN VALUES HOURLY MEAN VALUES	. 17 . 19 . 19 . <i>19</i> . <i>19</i> . 21
CHARTERS TOWERS OBSERVATORY	. 28
VARIOMETERS	. 28
ABSOLUTE INSTRUMENTS AND CORRECTIONS	. 28
BASELINES	. 29
OPERATIONS	
SIGNIFICANT EVENTS 2002	
CTA 2002 – DATA LOSSES	
DISTRIBUTION OF CTA DATA DURING 2002	
CHARTERS TOWERS ANNUAL MEAN VALUES	
MONTHLY & ANNUAL MEAN VALUES	
HOURLY MEAN VALUES	. 31
GNANGARA OBSERVATORY	. 38
VARIOMETERS	. 38
ABSOLUTE INSTRUMENTS AND CORRECTIONS	. 38
BASELINES	. 38
OPERATIONS	. 39
NOTES AND ERRATA (CUMULATIVE SINCE AGR'93)	. 39
SIGNIFICANT EVENTS 2002	
DISTRIBUTION OF GNA DATA DURING 2002	
GNA 2002 – DATA LOSS	
K INDICES	
GNA 2002 – RAPID VARIATION PHENOMENA	
Sudden Storm Commencements (ssc)	
Solar Flare Effects (sfe)	
GNANGARA, 2002 – PRINCIPAL MAGNETIC STORMS	
GNANGARA ANNUAL MEAN VALUES	
MONTHLY & ANNUAL MEAN VALUES	
HOURLY MEAN VALUES	. 43
KAKADU OBSERVATORY	. 50
VARIOMETERS	. 50
BASELINES	
ABSOLUTE INSTRUMENTS & CORRECTIONS	
OPERATIONS	
DISTRIBUTION OF KDU DATA DURING 2002	
SIGNIFICANT EVENTS 2002	
DATA LOSSES IN 2002:	
KAKADU ANNUAL MEAN VALUES	
MONTHLY & ANNUAL MEAN VALUES	
HOURLY MEAN VALUES	. 53

End of Part 1

CONTENTS CONTINUED ...

Part 2

LEARMONTH OBSERVATORY	60
VARIOMETERS	60
ABSOLUTE INSTRUMENTS & CORRECTIONS	60
OPERATIONS	
DISTRIBUTION OF LRM DATA DURING 2002	
NOTES AND ERRATA (CUMULATIVE SINCE AGR'93).	
LRM –Significant Events 2002	
LRM – DATA LOSS IN 2002	
LEARMONTH ANNUAL MEAN VALUES	
MONTHLY & ANNUAL MEAN VALUES	
HOURLY MEAN VALUES	63
MACQUARIE ISLAND	70
VARIOMETERS	70
ABSOLUTE INSTRUMENTS AND CORRECTIONS	70
OPERATIONS	70
DISTRIBUTION OF MCQ DATA DURING 2002	71
MCQ, 2002 – SIGNIFICANT EVENTS:	71
MCQ, 2002 – DATA LOSSES:	
MACQUARIE ISLAND ANNUAL MEAN VALUES	
MONTHLY & ANNUAL MEAN VALUES	
HOURLY MEAN VALUES	72
MAWSON OBSERVATORY	79
VARIOMETERS	79
ABSOLUTE INSTRUMENTS AND CORRECTIONS	80
BASELINES	80
OPERATIONS	
MAW 2002 – DATA LOSS	
MAWSON, ANTARCTICA ANNUAL MEAN VALUES	
DISTRIBUTION OF MAW DATA DURING 2002	
MAW SIGNIFICANT EVENTS 2002	
K INDICES	
MONTHLY & ANNUAL MEAN VALUES	
HOURLY MEAN VALUES	84
MAW – NOTES AND ERRATA (CUMULATIVE SINCE	6.6
AGR'93)	90

CASEY OBSERVATORY
History
VARIOMETERS
Absolute Instruments and Corrections
CASEY ANNUAL MEAN VALUES
CASEY OPERATIONS
SIGNIFICANT EVENTS: CSY, 2002
DISTRIBUTION OF CSY DATA DURING 2002
MONTHLY & ANNUAL MEAN VALUES
HOURLY MEAN VALUES
DATA LOSSES: CSY, 2002 100
Notes and Errata (cumulative since $AGR'93$). 100
SUMMARY OF DATA LOSS IN THE
SUMMARY OF DATA LOSS IN THE AUSTRALIAN OBSERVATORIES IN 2002 101 INTERNATIONAL QUIET & DISTURBED DAYS
AUSTRALIAN OBSERVATORIES IN 2002 101 INTERNATIONAL QUIET & DISTURBED DAYS
AUSTRALIAN OBSERVATORIES IN 2002 101 INTERNATIONAL QUIET & DISTURBED DAYS
AUSTRALIAN OBSERVATORIES IN 2002 101 INTERNATIONAL QUIET & DISTURBED DAYS
AUSTRALIAN OBSERVATORIES IN 2002 101 INTERNATIONAL QUIET & DISTURBED DAYS
AUSTRALIAN OBSERVATORIES IN 2002 101 INTERNATIONAL QUIET & DISTURBED DAYS

The Australian Geomagnetism Report has been published in electronic format since Volume 47 for calendar year 1999.

These volumes are available on Geoscience Australia's web site: http://www.ga.gov.au/

The final volume that was produced in printed format was the *Australian Geomagnetism Report 1998*, Volume 46.

Part 2

LEARMONTH OBSERVATORY

Learmonth, Western Australia, is situated on Australia's North West Cape overlooking the Exmouth Gulf to the east and Cape Range to the west. Learmonth is approximately 1100km north of the city of Perth. The nearest town is Exmouth, approximately 35km to the north. The Learmonth Geomagnetic Observatory is situated at the Learmonth Solar Observatory, jointly staffed by IPS Radio and Space Services, Department of Industry, Tourism & Resources and the U.S. Air Force. The magnetic observatory was established in late November 1986 from when it has operated continuously. More details of the observatory's history are in *AGR 1994*.

The observatory comprised:

• Two small underground vaults that housed the variometer sensors located within the perimeter of the solar observatory compound, both at approximately 40m to the east of the RSTN building.

The principal (fluxgate sensor) vault was 0.6m x 0.6m of concrete construction with a 25mm plastic lid and was set into the ground by about two-thirds of its 1m depth. A smaller plastic subsidiary vault at a distance of approximately 3m from the principal vault housed the fluxgate electronics. A 50mm diameter PVC conduit carrying control and power cables ran underground from the subsidiary vault to the electronics console and data acquisition computer in the solar observatory Radio Solar Telescope Network (RSTN) building.

A second (wooden) PPM sensor vault was approximately 10m north of the principal vault. A PVC conduit carried the PPM sensor head signal cable to the electronics console in the RSTN building.

Both vaults were lined with polystyrene foam and buried beneath local sand to minimize diurnal temperature fluctuations

- A concrete absolute observation pier within a roofed shelter with brick walls on two sides to the same height as the pier. This was about 200 metres south of the solar observatory, situated on Royal Australian Air Force property. There was a safety tie down bar on the absolute pier to ensure that that the absolute instruments could not be knocked from the pier during observations.
- The control electronics, acquisition PC and UPS back-up power were located within the central or Radio Solar Telescope Network building of the solar observatory

Key data for the observation pier of the observatory are:

- 3-character IAGA code: LRM
- Commenced operation: November 1986
- Geographic latitude: 22 13' 19" S
- Geographic longitude: $114^{\circ} 06' 03'' E$
- Geomagnetic[†]: Lat. -32.32°; Long. 186.31°
- Elevation above mean sea level (top of Pier A): 4 metres
- Lower limit for K index of 9: 300 nT.
- Azimuth of principal reference (west windsock) from Pier A: 283° 02' 18"
- Observers in Charge: G.A. Steward (IPS Radio & Space Services)
- † Based on the IGRF 2000.0 model updated to 2002.5

Variometers

Variations in the magnetic NW, NE and vertical components of the magnetic field were recorded at Learmonth in 2002 using a three component Danish Meteorological Institute FGE suspended three axis fluxgate (s/n E0254, S0227).

(This instrument was installed on since 12 December 2001.) The analogue data from the DMI instrument, including sensor and electronics temperatures were digitized with an ADAM 4017 8 channel 16 bit converter and recorded at 1-second intervals.

The data from the fluxgate instrument were also recorded independently by IPS for their use.

During 2002 a Geometrics model 856 (no. 50708) proton precession magnetometer (PPM) measured variations in the total intensity of the magnetic field, F. This served both as a backup, should any one of the X, Y or Z variometer channels become unserviceable, and as an F-check of the variometer model. The digital data from the variometer PPM were recorded at 10-second intervals.

The data from both the DMI fluxgate and PPM were recorded on a PC running MS-DOS-based data acquisition, control and display software. Timing was generated by the software (DOS) clock of the PC which was synchronized to 1-second pulses from a GPS clock.

The variometer and recording system was powered by 240VAC mains power. The equipment was protected from power outages and surges by an uninterruptible power supply.

Absolute Instruments & Corrections

Throughout 2002 the local observer performed regular (approximately weekly) sets of absolute observations, on the pier (A) in the absolute shelter, using the DIM comprising Bartington 010H no. 0702H fluxgate unit with Zeiss 020B theodolite no. 312714 together with Geometrics 856 no. 50471 PPM.

The DIM absolute observations were performed using the *offset* method (see *Kakadu Observatory – Absolute Instruments & Corrections*, this report) throughout 2002.

Instrument comparisons between the LRM observatory absolute instruments (G856_50471/sensor 980801 PPM and B0702H / Zeiss 020B 312714 DIM) and the travelling standard instruments (GSM90_003985 PPM, B0806H / Zeiss 010B 100856 DIM) were performed at LRM on 18-19 June 2002.

The results of the comparisons were:

Travelling Stndrd	LRM instrument		Inst. difference
GSM90_003985 -	G856_50471	=	-1.2nT (F)
B0806H/100856 -	B0702H/312714	=	-0.2' (Decl'n)
B0806H/100856 -	B0702H/312714	=	0.0' (Incl'n)

Comparisons between the travelling standard instruments and the Australian Standard instruments were performed on both 07 May & 16 July, 2002 at CNB observatory. These comparisons resulted in fairly unconvincing instrument differences of:

0nT, -0.1' and +0.1' in F, D, and I respectively.

Because of the uncertainties, corrections to the travelling standard instruments were all adopted as zero.

LRM – Absolute Instruments & Corrections (cont.)

This resulted in the corrections to the LRM instruments of:

Australian Stndrd	LRM instrument		Inst. correction
GSM90_905926 -	G856_50471	=	-1.2nT (F)
E810_200/353756 -	B0702H/312714	=	-0.2' (Decl'n)
E810_200/353756 -	B0702H/312714	=	0.0' (Incl'n)

The instrument corrections adopted for the absolute magnetometers used at LRM during 2002 convert to the baseline corrections:

 $\Delta X = -0.66 \text{ nT}$ $\Delta Y = -1.73 \text{ nT}$ $\Delta Z = +1.00 \text{ nT}.$

at the mean 2002 field values at LRM of 29725nT, 155nT and -44230nT in X, Y and Z respectively. These corrections have been applied to all LRM final data in this report.

Operations

The local observer at LRM magnetic observatory was a staff member of IPS at the Learmonth Solar Observatory. During 2002 the observer performed routine tasks at the magnetic observatory that included:

- performing a set of absolute observations each week;
- mailing observation sheets to GA, Canberra each week;
- instrument checks, system re-sets etc. as required.

1-second values and 1-minute mean value data were transferred daily through modems via telephone lines to GA in Canberra. The clocks on the acquisition PC were also checked each weekday and corrected if necessary via the telephone link to GA.

The DMI variometer had accurately determined temperature coefficients.

The absolute observations were processed at GA in Canberra, where final data calibration and adoptions were made.

Distribution of LRM data during 2002

Preliminary Monthly Means for Project Ørsted

- Sent monthly by email to IPGP throughout 2002
- 1-minute & Hourly Mean Values
- 2001: WDC-C1, Copenhagen, Denmark (12 Mar. 2002)
- 2001: WDC-A, Boulder, USA (02 Apr. 2002)

Notes and Errata (cumulative since AGR'93)

The adjustment applied to the absolute PPM used at Learmonth in 1994 was given as -1nT on page 44 in the *AGR1994*. This correction was in addition to a -1nT correction to the standard PPM (MNS2 no.3) and so should have been shown as -2nT. This results in baseline adjustments in X, Y and Z of -1.1nT, 0.0nT and +1.7nT respectively. No changes in the data presented are required as the correct adjustments were applied in their calculation.

LRM –Significant Events 2002

- 01 Jan All absolute observations corrupted due to poor
- 20 Jun observing technique
- 30 Jan 0420: System reboot unknown reason.
- 31 Jan Acquisition PC clock corrected and rate set to -18750
- 04 Feb GPS system checked LED is flashing O.K.
- 18 Feb About 2330 to about 19 / 0400: Unexplained data contamination and BLV problems
- 03 Mar 0018: System rebooted
- 08 Mar DIM in box fell about 30cm when handle on box broke. Stop watch ceased working: wrist watch used for timing of observations.

LRM – Significant Events (cont.)

- 10 Mar 0605-0610: BLV jump in Y channel
- 11 MarReplacement stopwatch sent.0610:BLV jumps in X Y and PPM only
- 20 Mar ~0646-0816: Baseline jump Van parked 20m from fluxgate inside main fence to move fuel drums for IPS generator
- 25 Mar 0215-0223: Jumps in X,Y,& Z baselines
- 05 Apr No observations this week too much sheep dung in absolute hut
- 18 Apr 1144: System rebooted (data loss). No PPM data after reboot
- 10 May PPM working again 02:45
- 16 May 1200-2400: Rapid drop in electronics temperature.
- 17 May DIM box strap broke causing instrument to drop.
- 18-22 Maintenance visit by GA officer (PGC): discovered
- June problems with observations; carried out training; performed instrument comparisons; tested prospective sites for a replacement vault.
- 03 Jul Shelves for absolute instruments sent by road freight.
- 08 Jul A replacement 28ft radio dish (for solar observatory) arrived at RAAF base. It will be transported and installed at LRM in the next few days
- 10 Jul Absolute instrument shelves arrived at LRM.
- 16 Jul 0000-0830: Cranes replacing 28ft radio dish corrupted variometer data.
- 17 Jul 0000-0800: More work on radio dish corrupting data.
- 09 Aug 0117 and 0323: Jumps in X,Y and Z baselines
- 08 Sep A magnitude 7.5 earthquake occurred in New Guinea at 1844UTC producing interference on LRM data commencing about 1857 and lasting about 1 hour. (Also affected KDU and GNA - all suspended DMI systems.) Absolute observations missed
- 08 Oct Modem failed to answer requested local OIC to reset the a modem reset.
- 09 Oct Modem found unplugged plugged in by local OIC
- 10 Oct Magnitude 7.6 earthquake at 10:50:20UT in Irian Jaya affected the LRM system.
- 03 Nov 2138: Baseline jump in X and Y.
- 08 Dec 2310: System rebooted

LRM – Data loss in 2002

Periods of data during which processing was inhibited on all data channels (X,Y,Z,F) due to contamination:

- 18 Feb 2330 to 19 / 0450 (05h 21m)
- 11 Mar 0603-0604 (2 min), 0611-0612 (2 min)
- 20 Mar 0646-0647 (2 min), 0815-0816 (2 min)
- 25 Mar 0215-0216 (2 min), 0223-0224 (2 min)
- 16 Jul 0000-0830 (08h 31m)
- 17 Jul 0000-0800 (08h 01m)
- 09 Aug (0117-0118 (2 min), 0323-0324 (2 min)

Data loss through other causes:

- 02 Mar 0016-0018 (3 mins) XYZF: System rebooted
- 18 Apr 1113-1144 (32 mins) XYZF: Power failure
- 18 Apr 1145 to 10 May / 0238 (21d 14h 54m) F channel only: PPM failure.
- 08 Dec 2307-2309 (3 mins) XYZF: System rebooted.

Learmonth Annual Mean Values

The table below gives annual mean values calculated using the monthly mean values over **All** days, the 5 International **Quiet** days and the 5 International **Disturbed** days in each month. Plots of these data with secular variation in H, D, Z & F are on pages 68-69.

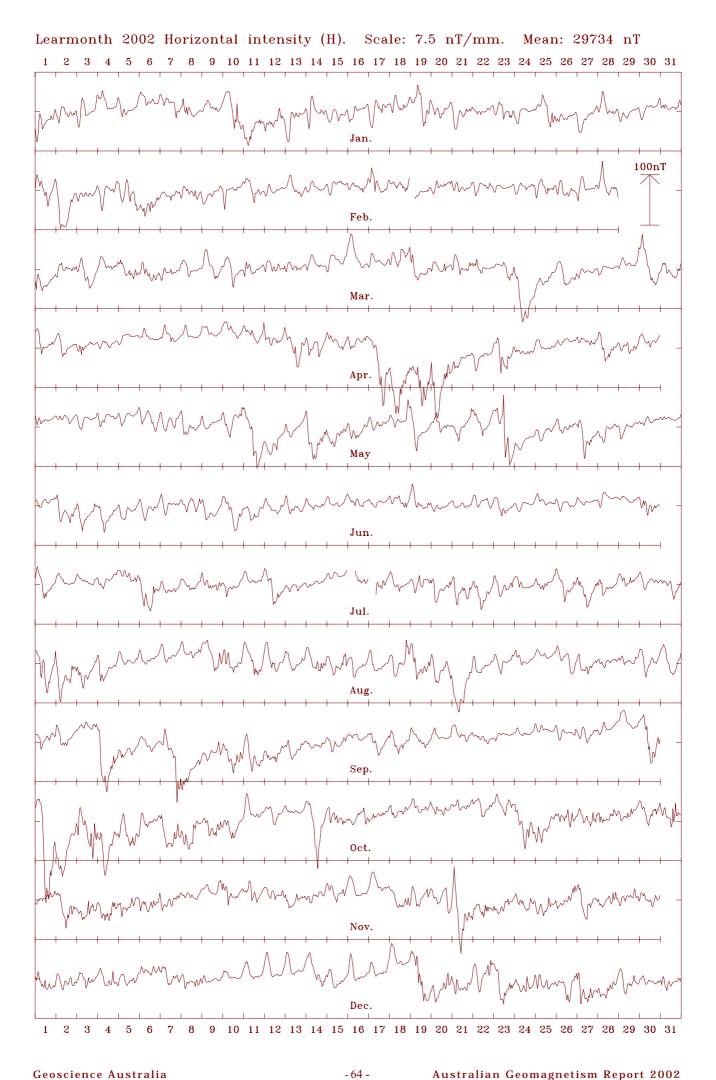
Year	Days		D			н	X	Y	Z	F	Elts
	,-	(Deg	Min)	(Deg	Min)	(nT)	(nT)	(nT)	(nT)	(nT)	
1987.5	А	-0	34.9	-56	26.7	29480	29478	-299	-44446	53334	DHZ(1)
1988.5	Α	-0	33.5	-56	27.0	29481	29479	-288	-44457	53344	DHZ
1989.5	Α	-0	34.3	-56	27.1	29465	29464	-294	-44436	53317	DHZ
1990.5	А	-0	28.8	-56	25.4	29501	29500	-247	-44441	53342	DHZ
1991.5	А	-0	26.3	-56	24.5	29507	29506	-226	-44426	53333	DHZ
1992.5	А	-0	23.4	-56	22.6	29531	29530	-201	-44407	53330	DHZ
1993.5	Α	-0	18.9	-56	21.2	29550	29549	-162	-44396	53331	DHZ
1994.5	Α	-0	15.0	-56	20.5	29555	29555	-129	-44386	53326	DHZ
1995.5	Α	-0	10.8	-56	18.2	29588	29588	-93	-44373	53333	DHZ
1996.5	А	-0	06.2	-56	15.5	29630	29630	-54	-44358	53344	DHZ
1997.5	Α	-0	01.3	-56	13.3	29658	29658	-11	-44338	53343	DHZ
1998.5	А	0	04.2	-56	11.6	29676	29676	36	-44320	53338	DHZ
1999.5	А	0	09.2	-56	09.6	29696	29696	80	-44292	53325	ABZ(2)
2000.5	А	0	13.5	-56	7.9	29707	29706	116	-44260	53305	ABZ
2001.5	A	0	17.7	-56	5.7	29724	29724	153	-44227	53287	ABZ
2002.5	A	Õ	20.8	-56	4.2	29734	29733	180	-44197	53268	ABZ
	Q	-0	34.8	-56	26.3	29486	29484	-299	-44445	53336	
1987.5			34.8 33.5		26.3 26.3	29486 29494	29484 29492	-299 -288		53336 53349	DHZ(1)
1988.5	Q	-0 -0		-56		29494 29481	29492 29479	-200 -294	-44455		DHZ
1989.5	Q	-	34.3	-56	26.2				-44433	53324	DHZ
1990.5	Q	-0	28.7	-56	24.5	29516	29515	-246	-44439	53348	DHZ
1991.5	Q	-0	26.2	-56	23.4	29527	29526	-225	-44423	53341	DHZ
1992.5	Q	-0	23.3	-56	21.7	29545	29544	-200	-44405	53336	DHZ
1993.5	Q	-0	18.8	-56	20.5	29561	29560	-162	-44394	53336	DHZ
1994.5	Q	-0	15.0	-56	19.7	29569	29569	-129	-44384	53332	DHZ
1995.5	Q	-0	10.8	-56	17.5	29600	29600	-93	-44371	53338	DHZ
1996.5	Q	-0	06.3	-56	15.2	29636	29635	-54	-44357	53346	DHZ
1997.5	Q	-0	01.3	-56	12.8	29667	29667	-11	-44338	53348	DHZ
1998.5	Q	0	04.1	-56	11.1	29686	29686	35	-44318	53342	DHZ
1999.5	Q	0	09.2	-56	09.0	29705	29705	80	-44290	53329	ABZ (2)
2000.5	Q	0	13.5	-56	7.1	29719	29719	117	-44258	53311	ABZ
2001.5	Q	0	17.8	-56	5.0	29736	29736	154	-44225	53293	ABZ
2002.5	Q	0	20.8	-56	3.3	29748	29747	180	-44195	53274	ABZ
1987.5	D	-0	34.9	-56	27.3	29469	29467	-299	-44448	53329	DHZ(1)
1988.5	D	-0	33.6	-56	28.2	29461	29459	-288	-44460	53335	DHZ
1989.5	D	-0	34.4	-56	29.0	29433	29431	-295	-44441	53303	DHZ
1990.5	D	-0	29.0	-56	26.7	29478	29477	-249	-44445	53332	DHZ
1991.5	D	-0	26.5	-56	26.5	29473	29472	-227	-44431	53318	DHZ
1992.5	D	-0	23.5	-56	24.1	29506	29505	-201	-44412	53320	DHZ
1993.5	D	-0	18.9	-56	22.3	29530	29529	-163	-44398	53322	DHZ
1994.5	D	-0	14.9	-56	21.6	29537	29537	-128	-44389	53318	DHZ
1995.5	D	-0	10.9	-56	19.1	29574	29574	-94	-44374	53326	DHZ
1996.5	D	-0	06.2	-56	16.0	29622	29622	-53	-44359	53340	DHZ
1997.5	D	-0	01.3	-56	14.2	29643	29643	-11	-44340	53336	DHZ
1998.5	D	0	04.2	-56	13.0	29652	29652	36	-44322	53326	DHZ
1999.5	D	0	09.3	-56	10.7	29677	29677	81	-44295	53317	ABZ (2)
2000.5	D	0	13.4	-56	9.5	29679	29679	116	-44264	53294	ABZ
2001.5	D	0	17.6	-56	7.2	29699	29699	152	-44230	53276	ABZ
2002.5	D	0	20.8	-56	5.4	29712	29712	179	-44200	53259	ABZ

Note (1): At the near zero magnetic declination at LRM the DHZ sensor orientation closely approximated an XYZ orientation. Note (2): ABZ indicates sensor alignments in the magnetic NW, NE and vertical directions.

Monthly & Annual Mean Values

The following table gives final monthly and annual mean values of each of the magnetic elements for the year.

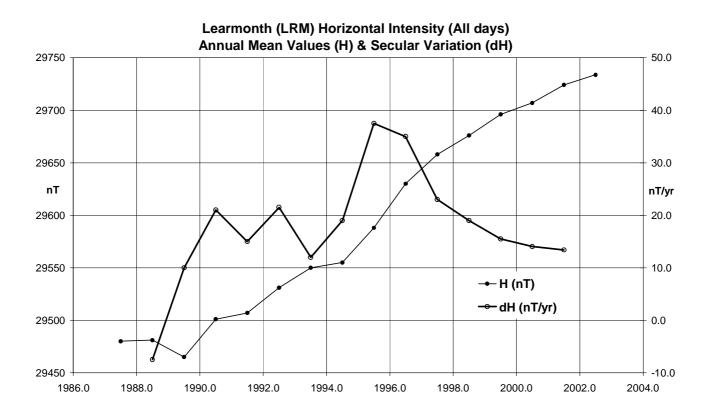
A value is given for means computed from all days in each month (All days), the five least disturbed of the International Quiet days (5xQ days) in each month and the five International Disturbed days (5xD days) in each month.

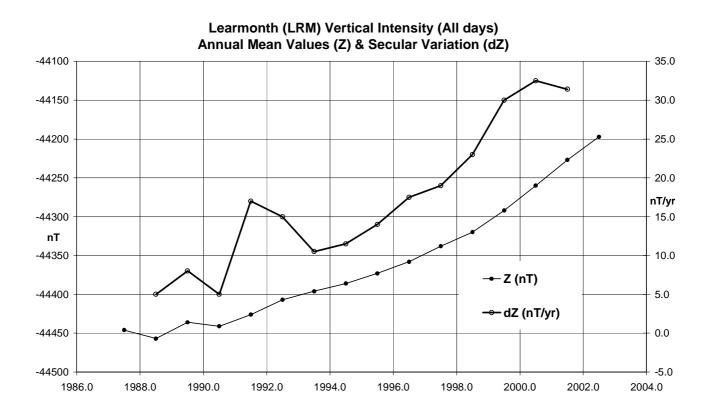

Learmonth	2002	X (nT)	Y (nT)	Z (nT)	F (nT)	H (nT)	D (East)	I
January	All days	29737.7	167.4	-44210.7	53281.8	29738.2	+0° 19.3'	-56° 04.4'
	5xQ days	29748.5	168.4	-44210.1	53287.3	29749.0	+0° 19.5'	-56° 03.8'
	5xD days	29727.0	166.4	-44214.4	53278.8	29727.5	+0° 19.2'	-56° 05.1'
February	All days	29734.8	171.5	-44206.1	53276.3	29735.3	+0° 19.8'	-56° 04.4'
	5xQ days	29739.2	171.7	-44205.3	53278.1	29739.7	+0° 19.8'	-56° 04.1'
	5xD days	29719.1	170.1	-44208.6	53269.7	29719.6	+0° 19.7'	-56° 05.3'
March	All days	29737.1	173.2	-44200.4	53272.9	29737.6	+0° 20.0'	-56° 04.1'
	5xQ days	29747.2	174.2	-44196.6	53275.3	29747.7	+0° 20.1'	-56° 03.4'
	5xD days	29723.7	173.4	-44199.2	53264.5	29724.2	+0° 20.1'	-56° 04.7'
April	All days	29722.0	176.4	-44200.8	53264.8	29722.5	+0° 20.4'	-56° 04.9'
	5xQ days	29741.9	176.9	-44198.4	53274.0	29742.5	+0° 20.5'	-56° 03.7'
	5xD days	29668.4	176.8	-44210.9	53243.3	29668.9	+0° 20.5'	-56° 08.1'
Мау	All days	29722.5	177.0	-44199.3	53263.8	29723.0	+0° 20.5'	-56° 04.8'
	5xQ days	29725.2	177.0	-44198.6	53264.7	29725.7	+0° 20.5'	-56° 04.6'
	5xD days	29708.1	175.5	-44201.3	53257.5	29708.7	+0° 20.3'	-56° 05.6'
June	All days	29739.8	177.7	-44194.0	53269.1	29740.4	+0° 20.5'	-56° 03.7'
	5xQ days	29748.0	177.5	-44193.3	53273.1	29748.5	+0° 20.5'	-56° 03.2'
	5xD days	29731.0	178.1	-44195.1	53265.1	29731.5	+0° 20.6'	-56° 04.2'
July	All days	29740.0	181.1	-44191.5	53267.1	29740.5	+0° 20.9'	-56° 03.6'
	5xQ days	29749.7	179.6	-44190.4	53271.6	29750.2	+0° 20.8'	-56° 03.0'
	5xD days	29727.9	182.2	-44193.2	53261.8	29728.4	+0° 21.1'	-56° 04.3'
August	All days	29730.9	183.2	-44192.5	53262.9	29731.5	+0° 21.2'	-56° 04.1'
	5xQ days	29743.4	184.2	-44192.3	53269.7	29744.0	+0° 21.3'	-56° 03.4'
	5xD days	29708.4	185.9	-44193.3	53251.0	29709.0	+0° 21.5'	-56° 05.3'
September	All days	29731.5	185.1	-44191.3	53262.2	29732.1	+0° 21.4'	-56° 04.0'
	5xQ days	29754.4	186.3	-44186.9	53271.4	29755.0	+0° 21.5'	-56° 02.6'
	5xD days	29700.6	184.8	-44195.1	53248.2	29701.2	+0° 21.4'	-56° 05.8'
October	All days	29716.5	186.0	-44197.9	53259.4	29717.1	+0° 21.5'	-56° 05.1'
	5xQ days	29739.9	186.7	-44194.1	53269.3	29740.5	+0° 21.6'	-56° 03.7'
	5xD days	29676.1	184.3	-44201.5	53239.8	29676.7	+0° 21.3'	-56° 07.4'
November	All days	29735.7	187.8	-44193.0	53266.0	29736.3	+0° 21.7'	-56° 03.9'
	5xQ days	29753.5	189.4	-44192.1	53275.2	29754.2	+0° 21.9'	-56° 02.9'
	5xD days	29716.3	185.0	-44198.4	53259.7	29716.9	+0° 21.4'	-56° 05.1'
December	All days	29749.9	190.3	-44188.8	53270.5	29750.5	+0° 22.0'	-56° 03.0'
	5xQ days	29772.3	191.6	-44185.6	53280.4	29772.9	+0° 22.1'	-56° 01.6'
	5xD days	29735.6	189.7	-44188.8	53262.5	29736.2	+0° 21.9'	-56° 03.7'
Annual	All days	29733.2	179.7	-44197.2	53268.1	29733.8	+0° 20.8'	-56° 04.2'
Mean	5xQ days	29746.9	180.3	-44195.3	53274.2	29747.5	+0° 20.8'	-56° 03.3'

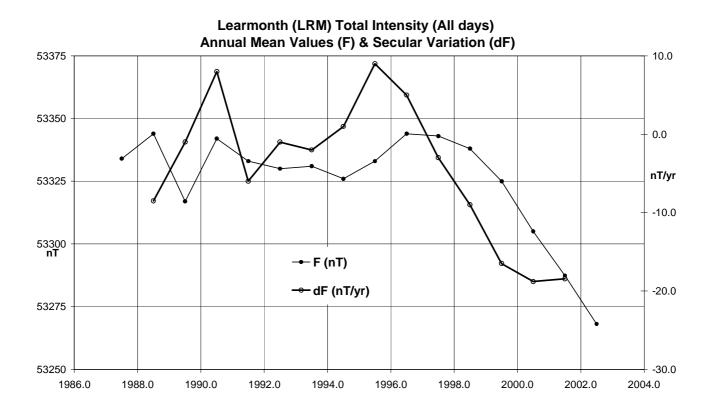
(Calculated: 9:54 hrs., Thu. 17 Apr. 2003)

Hourly Mean Values

The charts on the following pages are plots of hourly mean values.


The reference levels indicated with marks on the vertical axes refer to the *all-days* mean value for the respective months. All elements in the plots are shown increasing (algebraically) towards the top of the page, with the exception of Z, which is in the opposite sense. The mean value given at the top of each plot is the *all-days* annual mean value of the element.





Learmonth (LRM) Declination (All days) Annual Mean Values (D) & Secular Variation (dD) 0.5 6.0 5.0 0.3 0.1 4.0 '/yr -0.1 3.0 Deg. East -0.3 2.0 -- D (deg.) ---- dD ('/yr) -0.5 1.0 -0.7 0.0 1986.0 1988.0 1990.0 1992.0 1994.0 1996.0 1998.0 2000.0 2002.0 2004.0

- 68 -

Macquarie Island (Tasmania) is approximately 1,350 km. SSE of Hobart, that locates it about half way between Tasmania and the coast of the continent of Antarctica.

A magnetic station was first established at Caroline Cove at the southern end of Macquarie Island in December 1911 by Eric Webb. Another magnetic station, referred to as station A, was established, also in 1911, on the Macquarie Island isthmus which is at the northern end of the island. Station A was re-occupied in 1930 by the British Australian New Zealand Antarctic Expedition (BANZARE) and again in 1948 by the first Australian National Antarctic Research Expedition (ANARE).

The Macquarie Island magnetic observatory was built at the ANARE station on the isthmus and magnetic recording has been continuous since 1952. The observatory was upgraded to produce digital data in October 1984. Data recording was upgraded to one second sampling rates in 1993. Details of the staffing at the observatory is in *AGR* 1994. The Macquarie Island Observatory was accepted as an INTERMAGNET Magnetic Observatory in March 2002.

The observatory consists of a Variometer House, some 100 metres south of the office in the station's Science building; an Absolute House about 30 metres further south; and a PPM Variometer House between the Variometer and Absolute Houses. During summer, the area around the huts is used by elephant seals for breeding, so all cables and power to the huts are routed underground.

Key data for the principal observation pier (AE) of the observatory are:

•	3-character IAGA code:	MCQ
•	Commenced operation:	1952

•	Geographic latitude:	54° 30'	S

- Geographic longitude: 158° 57' E
- Geomagnetic[†]: Lat. -59.92°; Long. 244.06°
 † Based on the IGRF 2000.0 model updated to 2002.5
- Elevation above mean sea level (top of pier): 8 metres
- Lower limit for K index of 9: 1500 nT.
- Azimuth of principal reference pillar (NMI) from pier AE: 353° 44' 13"
- Distance to Pillar NMI: ~200 metres
- Observers in Charge: Mick Eccles (2001/02) Peter Pokorny (2002/03)

Variometers

The equipment employed to monitor magnetic variations at MCQ in 2002 included an Elsec 820M3 PPM for measuring the magnetic total intensity and a Narod 3-axis ringcore fluxgate (RCF) magnetometer. The RCF sensors, mounted on a marble 'tombstone' base, were not aligned with either the standard field elements or cardinal points, but were oriented in such a way that the three mutually orthogonal components recorded were of approximately equal magnitudes. At Macquarie Island the magnetic field vector is approximately 11 degrees off-vertical and each ring-core sensor made an angle of approximately 55 degrees with the magnetic vector. Details of the 'tombstone' RCF sensor base and the orientation of the sensors were given in the section on Variometer Alignment in AGRs 1993-1996.

The RCF sensors were located in the Variometer House and the associated electronics were in the ante-room of that building. The Variometer House temperature was controlled with a heating system. The variometer PPM sensor and electronics were situated in the PPM house, which had no temperature control. The data acquisition system and backup power were situated in the office, within the Science building.

Absolute Instruments and Corrections

Magnetic absolute measurements were performed in the Absolute House: on Pier AW with an Austral PPM (serial 525) and on Pier AE with an Elsec 810 DIM (serial 214) and a Zeiss020B (serial 311847) theodolite.

The classical QHMs (serial 177^{\ddagger} , 178, 179 on Askania circle 640616) were available as backup for use on pier AE.

A pier difference of:

 $\Delta X = -2.6nT$, $\Delta Y = +5.1nT$, $\Delta Z = +4.2nT$

was applied to adjust observations performed on pier Aw to be equivalent to observations on the principal Pier AE. This was adopted from pier difference absolute observations performed in 1991 and 1993 (confirmed by 2003 observations).

Instrument comparisons between the Macquarie Island absolute instruments (E810_214/311847 and Aust.525) and travelling standard instruments (B0806H/100856 GSM90_003985/11690) were performed at Macquarie Island on 24 and 26 Mar 2003.

The results of the instrument comparisons were:

Travelling Stndrd	MCQ instrument	Inst. difference
GSM90_003985 -	Austral 525 =	+0.38nT (F)
B0806H/100856 -	E810_214/311847 =	+0.19' (Decl'n)
B0806H/100856 -	E810 214/311847 =	+0.04' (Incl'n)

Comparisons between the travelling standard instruments and the Australian Standard instruments were performed on 03-04 March 2003 at CNB observatory. These comparisons resulted in the adoption of instrument differences of:

0nT, 0.0' and 0.0' in F, D, and I respectively.

Corrections to the MCQ instruments are therefore:

Australian Stndrd	MCQ instrument	Inst. correction
GSM90_905926 -	Austral 525 =	+0.38nT (F)
E810_200/353756 -	E810_214/311847 =	+0.19' (Decl'n)
E810_200/353756 -	E810_214/311847 =	+0.04' (Incl'n)

The instrument corrections adopted for the absolute magnetometers used at MCQ during 2002 convert to the baseline corrections:

 $\Delta X = +0.34 \text{ nT}$ $\Delta Y = +1.01 \text{ nT}$ $\Delta Z = -0.23 \text{ nT}.$

at the mean 2002 field values at MCQ of 10850nT, 6430nT and -63195nT in X, Y and Z respectively. These corrections have been applied to all MCQ final data including in this report.

[‡] See *Absolute Magnetometers employed in 2002* on page 5 of this report.

Operations

The magnetic observers-in-charge at Macquarie Island in 2002 were supported jointly by the Australian Antarctic Division (AAD) in the Department of The Environment and Heritage and GA. They were members of the Australian National Antarctic Research Expedition (ANARE).

The duties of the magnetic observer included maintaining the equipment, performing absolute observations to calibrate the variometers and maintaining the integrity of the observatory and reporting any changes to GA in Canberra.

Weekly absolute calibrations were performed on the observation piers in the absolute house by the ANARE communications technical officers: Mick Eccles from the beginning of 2002 until 01 March; then Peter Pokorny from March until the end of 2002.

MCQ – Operations (cont.)

The RCF variometer produced 8 samples per second that were averaged and output as 1-second data. The PPM variometer produced 10-second samples. The 1-second RCF data and 10-second PPM data as well as 1-minute means of both were recorded on an acquisition PC.

All data were automatically transmitted daily, via a network connection, to GA where they were processed and distributed. Timing was provided by the Antarctic Division's GPS clock (which was also used with Atmospheric and Space Physics experiments).

Distribution of MCQ data during 2002

Preliminary Monthly Means for Project Ørsted

• Sent monthly by email to IPGP

1-minute & Hourly Mean Values

• 2001: WDC-A, Boulder, USA (sent 04 Jun., 2002)

1-minute Values for Project INTERMAGNET

- Preliminary data daily to the Edinburgh GIN by e-mail from June 2002.
- Definitive data for CD-ROM sent to the WDC-C1 for Geomagnetism, Copenhagen Denmark:
 2001 data sent 04 Jun. 2002

MCQ, 2002 – Significant Events:

- 01 Mar Observer change over: Peter Pokorny replaced Mick Eccles.
- March Macquarie Island accepted as an INTERMAGNET Magnetic Observatory.
- 15 Mar Unexplained baseline jump.
- 17 Oct & 18th: Helipad repairs, bulldozer in quiet zone
- 21 Oct 0538-0700 & 2127 to 22 / 0331: Squirrel AS350 helicopter operations in the quiet zone. All operations completed and equipment removed from quiet zone by 22 / 0600.
- 09 Nov Acquisition PC halted access to hard disk lost
- 11 Nov Acquisition PC rebooted
- 01 Dec OIC away for 1 week so no absolute observations.
 - 2330 to 02 / 0400: Carpenters repairing seal damage to fences within the quiet zone around micro-pulsations equipment

MCQ, 2002 – Data losses:

- 15 Mar 0428-0429 (2 min) All channels: Data contaminated.
- 17 Mar 1730-1731 (2 min) All channels: Data contaminated.
- 09 Nov 1700 to 11 / 0329 (1d 10h 30m): PC failure

Macquarie Island Annual Mean Values

The table below gives annual mean values calculated using the monthly mean values over **All** days, the 5 International **Quiet** days and the 5 International **Disturbed** days in each month. Plots of these data with secular variation in H, D, Z & F are on pages 77-78.

Year	Days)		I	Н	X	Y	Z	F	Elts*
		(Deg	Min)	(Deg	Min)	(nT)	(nT)	(nT)	(nT)	(nT)	
1993.5	А	29	57.2	-78	48.1	12558	10880	6270	-63428	64659	ABC
1994.5	Α	30	02.2	-78	48.3	12549	10863	6281	-63404	64634	ABC
1995.5	А	30	06.6	-78	47.5	12559	10864	6300	-63376	64608	ABC
1996.5	Α	30	11.0	-78	46.4	12574	10870	6322	-63353	64589	ABC
1997.5	А	30	15.4	-78	45.9	12580	10866	6339	-63336	64573	ABC
1998.5	А	30	20.0	-78	45.8	12579	10857	6353	-63320	64557	ABC
1999.5	Α	30	23.6	-78	45.2	12586	10856	6367	-63294	64534	ABC
2000.5	Α	30	28.4	-78	45.0	12585	10847	6382	-63268	64507	ABC
2001.5	Α	30	33.5	-78	44.1	12595	10846	6404	-63231	64473	ABC
2002.5	Α	30	39.1	-78	43.5	12600	10840	6424	-63198	64442	ABC
1951.5		23	50.8	-78	17.6	13383	12241	5411	-64589	65961	HDZ
1952.5		24	04.2	-78	17.8	13371	12208	5453	-64550	65920	HDZ
1953.5		24	14.6	-78	18.2	13360	12182	5486	-64533	65901	HDZ
1954.5		24	28.4	-78	18.4	13356	12156	5533	-64535	65903	HDZ
1955.5		24	42.0	-78	18.6	13350	12129	5579	-64520	65887	HDZ
1956.5		24	53.2	-78	19.3	13333	12095	5611	-64506	65870	HDZ
1957.5		25	05.7	-78	19.8	13319	12062	5649	-64482	65843	HDZ
1958.5		25	16.6	-78	20.1	13307	12033	5682	-64456	65815	HDZ
1959.5		25	26.3	-78	20.9	13288	12000	5708	-64436	65792	HDZ
1960.5		25	32.0	-78	22.0	13262	11967	5716	-64414	65765	HDZ
1961.5		25	50.0	-78	22.5	13240	11917	5769	-64359	65707	HDZ
1962.5		26	05.8	-78	23.3	13216	11869	5814	-64321	65665	HDZ
1963.5		26	08.5	-78	24.2	13193	11843	5813	-64294	65634	HDZ
1964.5		26	17.0	-78	24.7	13174	11812	5834	-64249	65586	HDZ
1965.5		26	28.6	-78	25.5	13152	11773	5864	-64214	65547	HDZ
1966.5		26	37.6	-78	26.7	13121	11729	5881	-64175	65503	HDZ
1967.5		26	46.5	-78	28.5	13084	11681	5894	-64166	65486	HDZ
1968.5		26	54.7	-78	29.7	13053	11639	5908	-64132	65447	HDZ
1969.5		27	02.3	-78	30.8	13026	11602	5921	-64099	65409	HDZ
1970.5		27	09.6	-78	32.1	12996	11563	5932	-64078	65383	HDZ
1971.5		27	13.3	-78	33.3	12963	11527	5930	-64032	65331	HDZ
1972.5		27	22.1	-78	34.4	12937	11489	5947	-64008	65302	HDZ
1973.5		27	27.6	-78	35.8	12905	11451	5951	-63985	65273	HDZ
1974.5		27	34.3	-78	37.6	12865	11404	5955	-63956	65237	HDZ
1975.5		27	43.2	-78	38.2	12847	11373	5976	-63926	65204	HDZ
1976.5		27	51.6	-78	39.1	12822	11336	5992	-63891	65165	HDZ

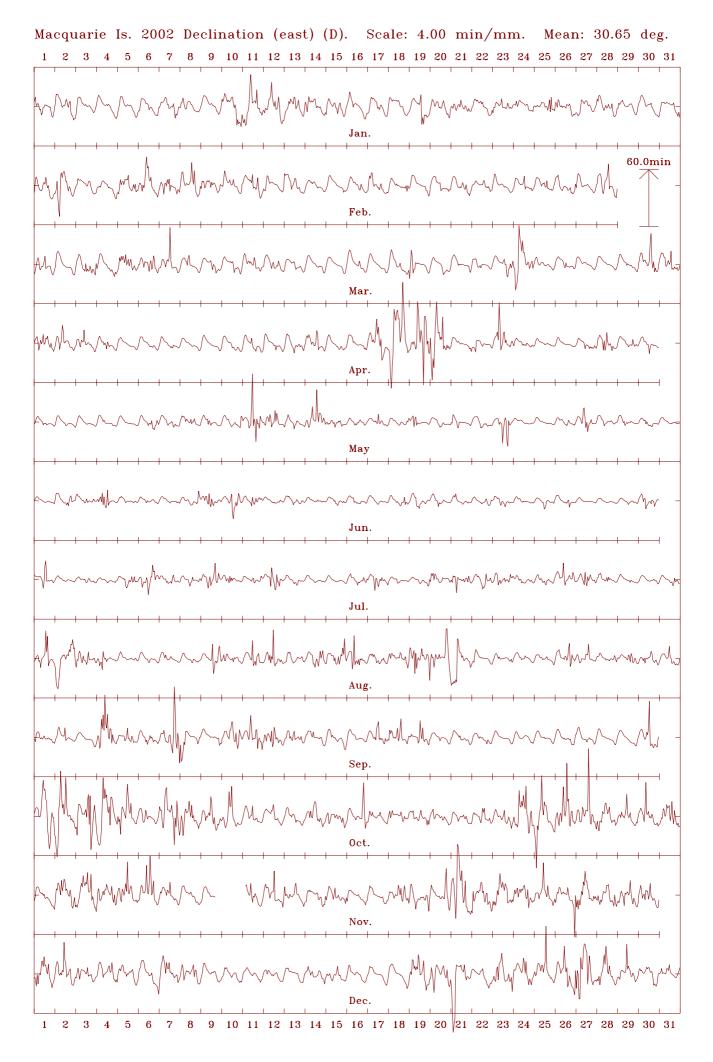
continued on page 79 ...

Monthly & Annual Mean Values

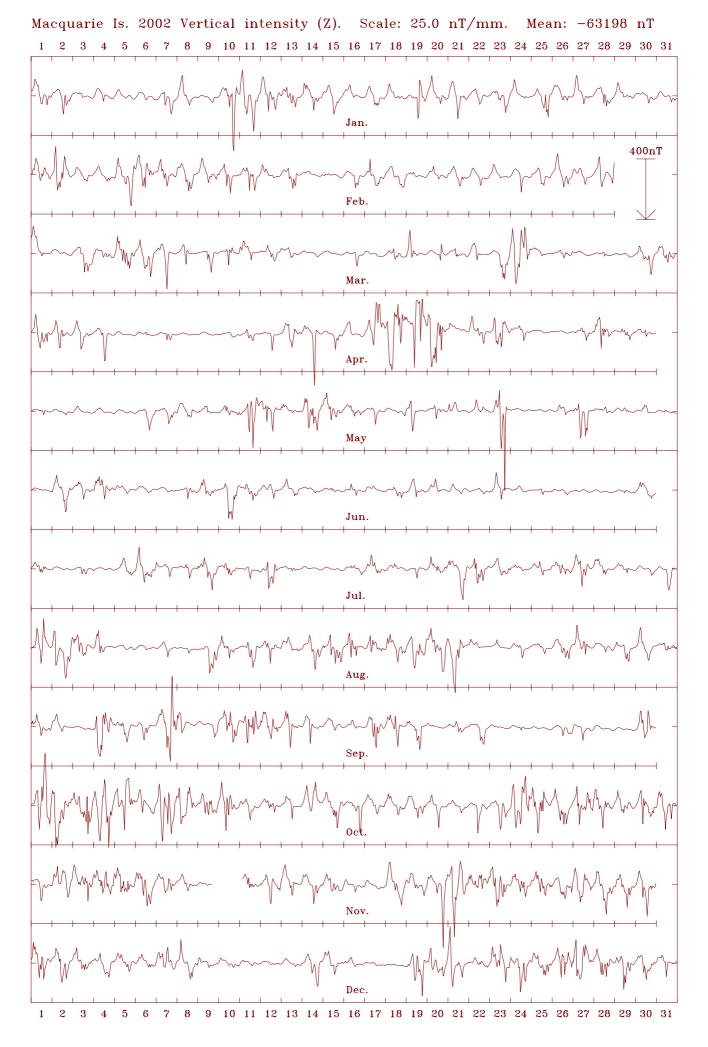
The following table gives final monthly and annual mean values of each of the magnetic elements for the year.

A value is given for means computed from all days in each month (All days), the five least disturbed of the International Quiet days (5xQ days) in each month and the five International Disturbed days (5xD days) in each month.

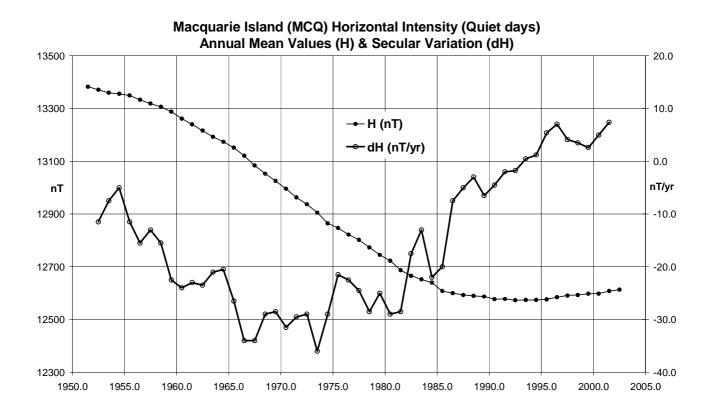
lacquarie Island	2002	X (nT)	Y (nT)	Z (nT)	F (nT)	H (nT)	D (East)	I.
January	All days	10859.1	6413.1	-63201.6	64447.7	12611.4	30° 33.9'	-78° 42.9'
	5xQ days	10868.4	6419.6	-63202.7	64450.9	12622.8	30° 34.1'	-78° 42.3'
	5xD days	10840.1	6398.3	-63192.7	64434.3	12587.6	30° 33.1'	-78° 44.1'
February	All days	10851.8	6417.3	-63203.1	64448.3	12607.3	30° 35.9'	-78° 43.2'
	5xQ days	10855.0	6419.7	-63201.3	64447.3	12611.3	30° 36.0'	-78° 42.9'
	5xD days	10847.9	6413.8	-63211.2	64455.3	12602.2	30° 35.6'	-78° 43.5'
March	All days	10839.0	6420.9	-63204.0	64447.4	12598.2	30° 38.5'	-78° 43.6'
	5xQ days	10847.3	6428.1	-63200.7	64446.2	12608.9	30° 39.1'	-78° 43.0'
	5xD days	10828.1	6420.2	-63205.7	64447.2	12588.5	30° 39.9'	-78° 44.2'
April	All days	10823.5	6417.0	-63211.2	64451.5	12582.8	30° 39.8'	-78° 44.5'
	5xQ days	10846.3	6427.4	-63206.4	64451.5	12607.7	30° 39.0'	-78° 43.2'
	5xD days	10730.7	6377.8	-63236.3	64457.2	12483.2	30° 43.6'	-78° 50.0'
Мау	All days	10837.4	6424.5	-63204.6	64448.0	12598.6	30° 39.6'	-78° 43.6'
	5xQ days	10841.1	6426.6	-63206.6	64450.8	12602.8	30° 39.6'	-78° 43.4'
	5xD days	10804.0	6408.5	-63189.9	64426.5	12561.8	30° 40.5'	-78° 45.4'
June	All days	10848.2	6429.2	-63194.7	64440.6	12610.3	30° 39.2'	-78° 42.9'
	5xQ days	10852.0	6431.0	-63192.6	64439.3	12614.4	30° 39.1'	-78° 42.7'
	5xD days	10835.8	6422.0	-63188.7	64431.9	12595.9	30° 39.2'	-78° 43.6'
July	All days	10847.5	6430.7	-63189.1	64435.2	12610.4	30° 39.6'	-78° 42.8'
	5xQ days	10851.2	6431.1	-63189.3	64436.0	12613.8	30° 39.2'	-78° 42.7'
	5xD days	10844.0	6428.7	-63184.6	64429.9	12606.4	30° 39.7'	-78° 43.0'
August	All days	10838.7	6428.3	-63191.2	64435.5	12601.7	30° 40.3'	-78° 43.3'
	5xQ days	10843.6	6432.4	-63192.6	64438.1	12607.9	30° 40.6'	-78° 43.0'
	5xD days	10836.3	6424.0	-63180.2	64424.1	12597.4	30° 39.7'	-78° 43.4'
September	All days	10831.0	6426.3	-63200.7	64443.4	12594.0	30° 40.9'	-78° 43.8'
	5xQ days	10849.2	6435.4	-63193.3	64440.0	12614.2	30° 40.5'	-78° 42.7'
	5xD days	10803.8	6413.8	-63210.7	64447.7	12564.3	30° 41.8'	-78° 45.5'
October	All days	10817.0	6418.0	-63201.7	64441.3	12577.8	30° 40.9'	-78° 44.7'
	5xQ days	10837.7	6427.2	-63198.3	64442.2	12600.2	30° 40.2'	-78° 43.5'
	5xD days	10778.5	6403.8	-63192.3	64424.5	12537.6	30° 43.0'	-78° 46.7'
November	All days	10834.4	6426.8	-63193.5	64437.0	12597.2	30° 40.6'	-78° 43.6'
	5xQ days	10852.5	6434.4	-63191.7	64438.9	12616.6	30° 39.8'	-78° 42.5'
	5xD days	10815.9	6424.4	-63208.6	64448.6	12580.1	30° 42.6'	-78° 44.6'
December	All days	10847.6	6431.5	-63175.1	64421.6	12611.0	30° 39.8'	-78° 42.7'
	5xQ days	10867.2	6440.0	-63171.7	64422.3	12632.1	30° 39.1'	-78° 41.5'
	5xD days	10824.2	6421.9	-63169.2	64411.0	12586.0	30° 40.9'	-78° 43.9'
Annual	All days	10839.6	6423.6	-63197.6	64441.5	12600.0	30° 39.1'	-78° 43.5'
Mean	5xQ days	10851.0	6429.4	-63195.6	64442.0	12612.7	30° 38.9'	-78° 42.8'

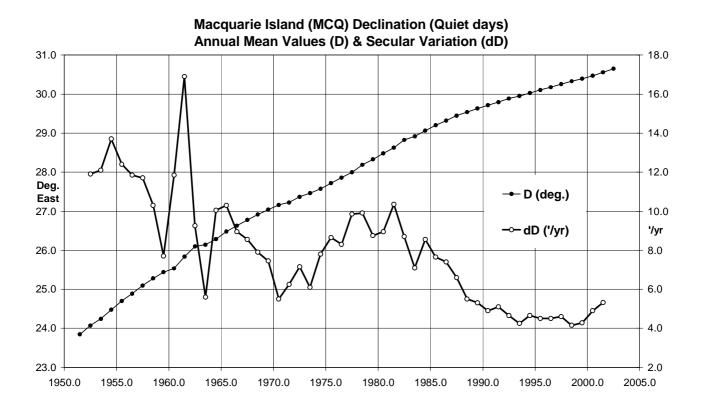

(Calculated: 14:14 hrs., Wed. 07 May 2003)

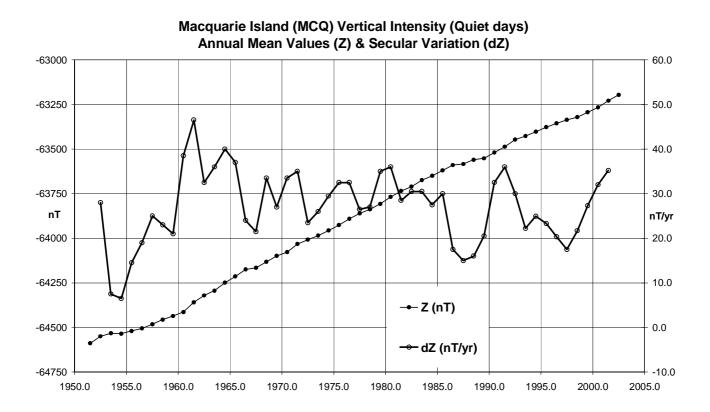
Hourly Mean Values


The charts on the following pages are plots of hourly mean values.


The reference levels indicated with marks on the vertical axes refer to the *all-days* mean value for the respective months. All elements in the plots are shown increasing (algebraically) towards the top of the page, with the exception of Z, which is in the opposite sense. The mean value given at the top of each plot is the *all-days* annual mean value of the element.






- 74 -

Macquarie Island (MCQ) Total Intensity (Quiet days) Annual Mean Values (F) & Secular Variation (dF) 66200 -5.0 66000 - F (nT) 65800 -15.0 ↔ dF (nT/yr) 65600 nΤ 65400 -25.0 nT/yr 65200 65000 -35.0 64800 64600 -45.0 64400 64200 -55.0 1950.0 1955.0 1960.0 1965.0 1970.0 1975.0 1980.0 1985.0 1990.0 1995.0 2000.0 2005.0

- 78 -

Year	Days	1	D			н	X	Y	Z	F	Elts
		(Deg	Min)	(Deg	Min)	(nT)	(nT)	(nT)	(nT)	(nT)	
1977.5		27	59.8	-78	39.9	12802	11304	6010	-63861	65132	HDZ
1978.5		28	11.3	-78	41.1	12773	11258	6034	-63838	65103	HDZ
1979.5		28	19.6	-78	42.3	12745	11219	6047	-63807	65067	HDZ
1980.5		28	28.8	-78	43.0	12723	11183	6067	-63768	65025	HDZ
1981.5		28	37.5	-78	44.5	12687	11136	6078	-63735	64985	HDZ
1982.5		28	49.5	-78	45.4	12666	11097	6107	-63711	64958	HDZ
1983.5		28	54.9	-78	45.7	12652	11075	6117	-63674	64919	HDZ
1984.5		29	03.7	-78	46.1	12640	11049	6140	-63650	64893	HDZ
1985.5		29	12.0	-78	47.4	12608	11006	6151	-63619	64856	XYZ
1986.5		29	19.0	-78	47.5	12600	10986	6169	-63590	64826	XYZ
1987.5		29	26.8	-78	47.8	12593	10966	6191	-63584	64819	XYZ
1988.5		29	32.2	-78	47.8	12590	10954	6207	-63560	64795	XYZ
1989.5		29	37.8	-78	47.8	12587	10941	6223	-63552	64786	XYZ
1990.5		29	42.8	-78	48.0	12577	10923	6234	-63519	64752	XYZ
1991.5		29	47.6	-78	47.6	12578	10915	6250	-63487	64721	XYZ
1992.5		29	53.0	-78	47.5	12573	10901	6264	-63447	64681	XYZ
1993.5	Q	29	56.9	-78	47.2	12575	10896	6277	-63427	64661	ABC
1994.5	Q	30	01.5	-78	47.0	12574	10887	6292	-63403	64637	ABC
1995.5	Q	30	06.2	-78	46.5	12577	10881	6308	-63377	64613	ABC
1996.5	Q	30	10.5	-78	45.9	12585	10879	6326	-63356	64594	ABC
1997.5	Q	30	15.2	-78	45.4	12591	10876	6344	-63336	64576	ABC
1998.5	Q	30	19.7	-78	45.1	12593	10870	6359	-63321	64562	ABC
1999.5	Q	30	23.5	-78	44.6	12598	10867	6373	-63293	64535	ABC
2000.5	Q	30	28.3	-78	44.3	12598	10858	6389	-63266	64509	ABC
2001.5	Q	30	33.3	-78	43.4	12608	10857	6409	-63229	64474	ABC
2002.5	Q	30	38.9	-78	42.8	12613	10851	6429	-63196	64442	ABC
1993.5	D	29	58.5	-78	50.0	12521	10846	6256	-63429	64654	ABC
1994.5	D	30	03.3	-78	50.2	12514	10831	6267	-63408	64632	ABC
1995.5	D	30	07.8	-78	49.4	12522	10830	6285	-63376	64601	ABC
1996.5	D	30	11.9	-78	47.4	12556	10852	6316	-63350	64583	ABC
1997.5	D	30	16.0	-78	47.3	12555	10843	6328	-63334	64566	ABC
1998.5	D	30	21.0	-78	47.7	12543	10824	6338	-63320	64550	ABC
1999.5	D	30	24.3	-78	46.4	12564	10836	6358	-63297	64532	ABC
2000.5	D	30	29.0	-78	46.7	12554	10819	6368	-63273	64507	ABC
2001.5	D	30	34.6	-78	46.0	12560	10813	6389	-63238	64473	ABC
2002.5	D	30	40.0	-78	44.8	12574	10816	6413	-63198	64437	ABC

MCQ - Annual Mean Values (cont.)

* Elements ABC indicates non-aligned variometer orientation

MAWSON OBSERVATORY

The magnetic observatory is part of Mawson scientific research station, built on the edge of Horseshoe Harbour, MacRobertson Land , in Antarctica. It is built on bare charnockite basement rock: there is no ice or soil cover.

The magnetic observatory buildings, comprising the Variometer House and the Absolute House, are situated on the south-east and inland side of the Mawson base, at the end of East Bay. They are in a magnetic quiet zone at an extremity of the Mason base.

In 1955 the Mawson observatory commenced recording magnetic variations with a three-component analogue magnetograph. The observatory has continuously recorded the geomagnetic field (and seismic activity) at Mawson since that time. In December 1985 the magnetic observatory was converted to digital recording. It is operated by Geoscience Australia as part of the Australian National Antarctic Research Expeditions (ANARE).

Additional details of the observatory's history are in the AGR 1994.

Key data for the principal observation pier (A) of the observatory are:

•	3-character IAGA code:	MAW			
•	Geographic latitude:	67°	36'	14"	S
•	Geographic longitude:	62°	52'	45"	Е

- Geomagnetic[†]: Lat. -73.10°; Long. 110.01°
 † Based on the IGRF 2000.0 model updated to 2002.5
- Elevation above mean sea level (top of pier A): 12 metres
- Lower limit for K index of 9: 1500 nT.
- Azimuth of principal reference mark (BMR89/1) from Pier A: 350° 36.9'
- Distance to azimuth mark BMR89/1: 112 metres
- Observers in Charge: Martin Purvins (2001, GA/BoM) Andrew Jenner (2002, GA/BoM) Kerry Steinberner (2003, GA/BoM)

Variometers

A 3-axis Narod ringcore fluxgate (RCF) magnetometer and an Elsec 820M3 PPM monitored magnetic variations at Mawson throughout 2002. The RCF sensor was located within the sensor room of the MAW Variometer House and the PPM sensor was in the recording room of the same building. This building also housed a global positioning system (GPS) clock, a data acquisition PC, a network PC, an Aironet ethernet radio link and a standby power supply.

MAW – Variometers (cont.)

An EDA 3-component fluxgate magnetometer and its associated data acquisition PC were available as a standby variometer to replace the principal system should it fail. This system, also in the Variometer House, was left powered off during 2002.

Two of the orthogonal RCF magnetometer sensors were horizontal and oriented so that they were each at an angle of 45 degrees to the direction of the horizontal component of the magnetic field (ie 45° to the magnetic declination, D). The third sensor was aligned vertically, ie. parallel with the geomagnetic element Z.

The RCF produced 8 samples per second that were averaged and output as 1-second data. The PPM variometer produced 10-second samples. The temperatures of the sensors and the electronics of the RCF system were monitored by its in-built dual temperature system. Temperature within the sensor room was kept close to 10° C by a fast-cycle heater and displayed by a Doric Trendicator digital thermometer with its sensor on a disused (PEM/Y) pier.

Absolute Instruments and Corrections

The principal absolute magnetometers used at Mawson in 2002 were a Danish fluxgate magnetometer (D26035) mounted on a Zeiss 020B theodolite (serial 311542) and an Elsec model 770 PPM (serial 199).

All absolute observations were performed on Pier A while the azimuth mark BMR89/1 was used for a declination reference.

Instrument comparisons (which were corrected to the Australian Magnetic Standard held at Canberra) performed in January 2003 indicated a correction of $+1.4 \pm 1.5$ nT for Elsec 770/199. This was consistent with the correction of +1.6nT applied in 2001. The comparisons also showed inconclusive small corrections for DIM D26035/311542 (+0.3 \pm 0.3' for D, and -0.1 \pm 0.1' for I).

For standardization with the Australian Magnetic Standard held at Canberra the corrections applied in 2001 have been retained for 2002 data, ie a correction of +1.6nT has been applied to the PPM readings, and corrections of zero have been applied to the DIM readings. These resulted in baseline corrections of:

 $\Delta X = +0.3 \text{ nT}$ $\Delta Y = -0.5 \text{ nT}$ $\Delta Z = -1.5 \text{ nT}.$

Secondary instruments were used monthly to maintain calibration in case of failure of the primary instruments. They included an Askania declinometer (serial 630332) and three horizontal magnetometers (QHM serial 300, 301, and 302). The declinometer and QMHs were used on Askania circle 611665.

The average α -parameter and H and D corrections to make the QHMs agree with baselines determined from the primary instruments during 2002 were:

QHM300:	$\alpha = +13.0\pm0.3'$	$\Delta H = -0.7 \pm 3.1 nT,$	$\Delta D = -1.5 \pm 1.6'$
QHM301:	$\alpha = -12.4 \pm 0.3'$	$\Delta H = +7.2 \pm 1.4 nT$,	$\Delta D = +0.0{\pm}1.2'$
QHM302:	$\alpha = -00.6 \pm 3.7'$	$\Delta H = -5.9 \pm 9.7 nT$	$\Delta D = +0.1 \pm 3.8'$

(No corrections were applied to these QHM observations.

These calculations used the QHM constants

QHM	K	k ₁ (e-5)	k ₂ (e-10)	a-factor	collimation
300	7828.0	39.4	69.0	2.22e5	22.5'
301	8230.5	39.7	90.0	0	72.5'
302	7690.1	42.0	90.0	0	27.0'

The average E-I-parameter and D correction to make the Askania declinometer agree with baselines determined from the primary instruments during 2002 were:

$$E-I = +1.4 \pm 0.4$$
' $\Delta D = -0.7 \pm 1.2$ '

Baselines

The standard deviations between the adopted variometer model and data, and the absolute observations, were: 0.2° in D; 0.1° in I; 1.1nT in X and Y; 0.7nT in F and Z.

There were some baseline changes from 5th to 16^{th} February 2002 not explained by the information available. At about 1040 on 5th, a new UPS was taken (and presumably installed) in the variometer hut. There were two changes to F-check, each about 50nT in the same sense (not cancelling) several minutes apart and caused mainly by change in the variometer PPM. F-check remained stable in that state until early on 6th but then started to "chatter", and then fell to near its original state. It was noticed that there was a circuit breaker flicking on and off at the time, and a new thermostat was installed to solve the problem. From then through to 16^{th} there was a curious wave in Fcheck. Fortuitously, there were absolute observations near the peak and trough of the F-check wave. Some data from 5th and 6th February were rejected, but the absolute observations on the 8th and 12th February were used to correct the F-check wave thereafter.

The system failed on 6th October (blizzard static problem), and was restarted on 9th October. The baselines became erratic at about that time, but probably before 6th October. A few *apparently corrupted* absolute measurements about that time lead to poor baseline certainty between 9th September and 11th October.

There was another step up in F-check on 6^{th} November, followed by an almost cancelling step down on 18^{th} November, without explanation. There were adequate absolute measurements before, during, and after this period, but they did not support the F-check variability.

The variometer appeared to be less stable from September to December.

Operations

The 2002 observers were employed jointly by Geoscience Australia (GA) and the Bureau of Meteorology (BoM) and were members of the Australian National Antarctic Research Expedition (ANARE). The Mawson Station personnel changeover each summer, with varying amounts of overlap.

The 2002 observer (AJ) arrived at MAW in January 2002 and took over the responsibility for operating the observatory on 12 February 2002. The 2001 observer (MP) departed in February 2002 after an extended changeover. The 2002 observer departed MAW in December 2002 after a brief changeover following the arrival of the 2003 observer (KS) who arrived in December 2002, and assumed responsibility for the observatory on 14 December 2002.

The observer was responsible for the continuous operation of the observatory and performed equipment maintenance as required. In 2002 the observer performed absolute observations once or twice per week and forwarded them by e-mail to GA where all data processing was performed. During the observations the variometer system was also checked.

The 1-second RCF data and 10-second PPM data as well as 1-minute means of both were recorded on an acquisition PC in the recorder room. The computer was connected to a pulse-per-second input from a GPS clock to keep the clock rate accurate. A PC running QNX that was connected to the station's radio network-hub, also in the variometer house, automatically copied files from the acquisition PC. The files on this PC were subsequently automatically retrieved at GA, Canberra, from a secure network by ftp via the ANARE satellite communications system. To ensure correct operation and to check system timing, the data acquisition system was routinely interrogated using a PC in the Science Building.

The recorder room also housed an uninterruptible power supply for power back-up.

MAW – Operations (cont.)

In earlier years considerable effort was made to isolate the variometer system from static electricity sparks originating from the very dry blown snow during the severe blizzards that are common at Mawson. The sparks occasionally halted the acquisition computer. This seems to have improved the situation, but there are still occasional data losses during blizzards which also delay attention from the local observer for a few days

The daily data were processed and distributed at GA, usually within a few hours after UT0. Daily data plots were examined at GA for possible problems, which were usually quickly rectified by the local observer. The final data for the year were reduced and analysed by GA staff.

The GA overseer for Mawson left GA in mid-2002. The annual change of local observers at Mawson, and the change of overseer at GA has left some gaps in knowledge of events during 2002, and some data has been rejected due to uncertainty in baselines – it is doubtful that this data could ever have been recovered, due to an oversight in not applying the practice to *calibrate each and every change in the variometer building before any further changes*. This occurred through inexperience and staff turnover.

MAW 2002 – Data Loss

- Feb 05 1030 to 06 / 0502 (18h 33m) All channels: UPS replaced – insufficient information to determine baseline changes during this period – data processing inhibited.
- Apr 23 0604-0605 (2 min) All channels: Unknown cause.
- Jul 21 1213 to 22/0619 (18h 07m) All channels: Associated with a power failure/UPS failure. Specific details are unknown.
- Jul 23 0555 (1 min) All channels: Restart, probably to reset variometer PPM.
- Oct 06 0006 to 09 / 0600 (3d 05h 55m) All channels: System halted most likely due to blizzard induced static discharge.
- Jul 22 0619-Jul 23 0600 (23h 42m): F-channel only: PPM failed to restart after power outage.

Problems in data:

- Feb 05 1030 to 15 / 0000 (9d 13h 31m) Poor baseline control during large baseline drifts in variometer.
- Sep 09 to Oct 11 (33 days) Poor baseline control.

Mawson, Antarctica Annual Mean Values

The table below gives annual mean values calculated using the monthly mean values over **All** days, the 5 International **Quiet** days and the 5 International **Disturbed** days in each month as indicated. Plots of these data with secular variation in H, D, Z & F are on pages 89-90.

Year	Days		D		I I	н	Х	Y	Z	F	Elts*
i cui	Suys	(Deg	Min)	(Deg	Min)	(nT)	(nT)	' (nT)	(nT)	(nT)	LIG
1955.5		-58	38.1	-69	33.3	18272	9854	-15387	-49012	52307	DHZ
1956.5		-58	53.2	-69	32.5	18282	9927	-15352	-49006	52305	DHZ
1957.5		-59	8.7	-69	31.1	18292	9461	-15655	-48974	52279	DHZ
1958.5		-59	25.6	-69	30.3	18293	9538	-15610	-48940	52247	DHZ
1959.5		-59	42.6	-69	28.5	18293	9615	-15562	-48860	52172	DHZ
1960.5		-59	59.6	-69	25.2	18323	9708	-15540	-48800	52127	DHZ
1961.5		-60	14.6	-69	23.1	18322	9228	-15828	-48707	52039	DHZ
1962.5		-60	30.1	-69	21.1	18333	9305	-15796	-48650	51990	DHZ
1963.5		-60	45.2	-69	17.6	18356	9386	-15775	-48562	51915	DHZ
1964.5		-60	59.2	-69	15.4	18353	9449	-15734	-48460	51819	DHZ
1965.5		-61	12.6	-69	13.1	18356	8958	-16022	-48368	51734	DHZ
1966.5		-61	24.0	-69	9.6	18362	9014	-15997	-48235	51612	DHZ
1967.5		-61	34.4	-69	7.2	18374	9068	-15980	-48168	51553	DHZ
1968.5		-61	43.8	-69	5.2	18365	9107	-15948	-48060	51449	DHZ
1969.5		-61	53.0	-69	3.4	18353	9144	-15913	-47954	51346	DHZ
1970.5		-62	0.5	-69	0.4	18358	8621	-16208	-47840	51241	DHZ
1971.5		-62	5.3	-68	56.4	18375	8652	-16211	-47719	51135	DHZ
1972.5		-62	11.4	-68	53.1	18381	8683	-16201	-47600	51026	DHZ
1973.5		-62	17.6	-68	49.7	18391	8717	-16194	-47486	50923	DHZ
1974.5		-62	24.8	-68	47.2	18390	8750	-16175	-47380	50824	DHZ
1975.5		-62	31.4	-68	44.0	18397	8785	-16164	-47269	50723	DHZ
1976.5		-62	37.3	-68	40.0	18418	8823	-16167	-47157	50626	DHZ
1977.5		-62	43.9	-68	36.9	18425	8857	-16157	-47051	50530	DHZ
1978.5		-62	51.9	-68	35.5	18421	8893	-16132	-46986	50468	DHZ
1979.5		-62	57.9	-68	32.9	18425	8923	-16120	-46890	50380	DHZ
1980.5		-63	5.8	-68	29.8	18432	8396	-16409	-46784	50284	DHZ
1981.5		-63	14.6	-68	27.1	18443	8443	-16397	-46705	50215	DHZ
1982.5		-63	21.2	-68	25.5	18433	8470	-16372	-46616	50128	DHZ
1983.5		-63	26.6	-68	22.3	18439	8498	-16364	-46503	50025	DHZ
1984.5		-63	33.1	-68	19.3	18446	8532	-16354	-46404	49936	DHZ
1985.5		-63	40.2	-68	17.0	18457	8571	-16346	-46342	49882	DHZ
1986.5		-63	48.7	-68	15.1	18460	8613	-16328	-46276	49822	XYZ
1987.5		-63	56.6	-68	12.5	18470	8655	-16317	-46198	49753	XYZ
1988.5		-64	4.4	-68	10.7	18475	8120	-16595	-46142	49703	XYZ
1989.5		-64	12.8	-68	9.7	18474	8160	-16574	-46099	49663	XYZ
1990.5		-64	21.1	-68	6.4	18492	8208	-16570	-46015	49592	XYZ
1991.5		-64	28.8	-68	4.2	18502	8250	-16561	-45957	49542	XYZ
1992.5	Q	-64	36.5	-68	-1.7	18513	7938	-16724	-45885	49479	XYZ
1993.5	Q	-64	43.6	-67	-59.4	18522	7908	-16749	-45819	49422	ABC
1994.5	ã	-64	51.8	-67	-57.4	18537	7874	-16781	-45779	49389	ABC
1995.5	ã	-65	0.4	-67	55.3	18550	7838	-16813	-45731	49350	ABC
	Q	-65	9.2	-67	53.5	18561	7799	-16843	-45692	49318	ABC

MAW - Annual Mean Values (cont.)

Year	Days		D		I	н	Х	Y	Z	F	Elts
. oui	Dujo	(Deg	Min)	(Deg	Min)	(nT)	(nT)	(nT)	_ (nT)	(nT)	
1997.5	Q	-65	18.9	-67	52.0	18572	7757	-16875	-45663	49295	ABC
1998.5	Q	-65	28.6	-67	51.3	18575	7710	-16900	-45642	49277	ABC
1999.5	Q	-65	38.5	-67	50.2	18579	7663	-16925	-45611	49250	ABC
2000.5	Q	-65	48.0	-67	49.6	18579	7616	-16946	-45585	49225	ABC
2001.5	Q	-65	56.3	-67	48.9	18577	7574	-16963	-45555	49198	ABC
2002.5	Q	-66	-5.2	-67	-48.2	18581	7532	-16986	-45540	49185	ABC
1992.5	А	-64	36.9	-68	-2.8	18499	7930	-16712	-45894	49482	XYZ
1993.5	Α	-64	44.2	-68	-0.7	18506	7898	-16736	-45830	49426	ABC
1994.5	Α	-64	52.9	-67	-59.4	18511	7858	-16760	-45794	49394	ABC
1995.5	Α	-65	0.9	-67	56.7	18532	7828	-16798	-45741	49352	ABC
1996.5	Α	-65	9.8	-67	54.5	18548	7791	-16833	-45698	49319	ABC
1997.5	Α	-65	19.4	-67	53.0	18560	7749	-16865	-45670	49297	ABC
1998.5	Α	-65	29.1	-67	52.4	18561	7702	-16887	-45648	49278	ABC
1999.5	Α	-65	39.0	-67	51.5	18561	7653	-16910	-45618	49250	ABC
2000.5	Α	-65	48.2	-67	50.6	18566	7610	-16935	-45594	49230	ABC
2001.5	Α	-65	56.2	-67	49.8	18567	7571	-16953	-45565	49203	ABC
2002.5	Α	-66	-5.8	-67	-49.3	18568	7524	-16975	-45546	49185	ABC
1992.5	D	-64	39.6	-68	-5.2	18466	7904	-16689	-45907	49482	XYZ
1993.5	D	-64	45.9	-68	-3.0	18476	7877	-16713	-45847	49430	ABC
1994.5	D	-64	55.3	-68	-1.9	18476	7831	-16734	-45804	49390	ABC
1995.5	D	-65	1.7	-67	58.8	18504	7812	-16774	-45752	49353	ABC
1996.5	D	-65	11.1	-67	56.2	18525	7775	-16814	-45707	49318	ABC
1997.5	D	-65	20.4	-67	55.0	18534	7733	-16844	-45682	49299	ABC
1998.5	D	-65	30.9	-67	54.8	18530	7680	-16864	-45665	49282	ABC
1999.5	D	-65	41.0	-67	53.9	18528	7630	-16884	-45626	49245	ABC
2000.5	D	-65	49.7	-67	52.6	18543	7593	-16917	-45614	49239	ABC
2001.5	D	-65	56.4	-67	51.6	18547	7561	-16935	-45583	49212	ABC
2002.5	D	-66	-7.6	-67	-51.2	18540	7504	-16953	-45552	49180	ABC

* Elements ABC indicates non-aligned variometer orientation

Distribution of MAW data during 2002

Preliminary Monthly Means for Project Ørsted

- Sent monthly by e-mail to IPGP
- 1-minute & Hourly Mean Values (WDC format)
- 2001: WDC-A, Boulder, USA (sent 23 May, 2002)
- 1-minute Values (INTERMAGNET format)
- 2001: WDC-C1, Copenhagen, Denmark (sent 23 May, 2002)

MAW Significant Events 2002

- Jan 03 Fire alarm system in variometer hut tested.
- Jan 09 2002 observer (AJ) arrived at Mawson station.
- Jan 11 Shovel discovered in snow drift 20m E of variometer hut.
- 21 Jan Unsuccessful attempt to adjust slack in DIM feet which were subsequently shortened.
- 24 Jan Unsuccessful attempt to adjust slack in DIM feet.
- Feb 04 Site officer's inspection tour of absolute and variometer huts.
- Feb 05 PPM comparisons with travelling standard. New UPS transferred to variometer hut
- Feb 06 Electrician's tour of magnetic huts. Circuit breaker#7 in variometer hut flicking on/off thermostat replaced. Power off to variometer hut, acquisition restarted at 05:01:45.
- Feb 08 Heater found not to be reset after electricians replaced thermostat. Temperature 5.85°C. Adjustments made to thermostat.
- Feb 09 Old UPS removed from variometer hut. Temperature 14°C, adjustments made to thermostat.
- Feb 11 Temperature adjustments made to variometer.

MAW – Significant Events (cont.)

- Feb 12 Variometer power off at 1515 and 0915 local time. 2002 observer (AJ) assumed responsibility of magnetic observatory.
- Feb 15 Polar Bird supply vessel arrived. Battery changed in power packs (and maybe in absolute instruments). Variometer Temperature 9.6°C.
- Feb 16 Some machinery for the Prince Charles Mountains Expedition of Germany & Australia passed through the magnetic quiet zone.
- Feb 19 Departure of Polar Bird.
- Feb 22 Arrival of Aurora Australis.
- Feb 25 Departure of Auroroa Australis.
- Feb 27 Temperature adjustments.
- Jul 22 UPS failed to continue operation through power outages. Apparent change in variometer characteristics at this time, or one or two weeks prior to this event.
- Oct 06 Acquisition computer stopped there was a blizzard lasting three days.
- Oct 09 Acquisition computer restarted, with unexplained interruptions and effects on the data.
- Dec 14 2003 observer (KS) assumed responsibility for magnetic observatory.

K indices

The table on the next page shows Mawson K indices for 2002. Using the digital data, these have been derived by a computer algorithm that calculates a simple range in the X and Y magnetic components over each 3-hour UT period. The K indices were calculated from the maximum of the X and Y ranges in the usual manner. This was suitable for Mawson as the diurnal variation is small.

K indices & Dail	v K sums at Mawson	Antarctica (K=9 li	imit: 1500 nT) for 2002

Date	January	February	March	April	Мау	June	Date
01 02 03 04 05	4664 4445 37 5544 5443 34 Q 4333 3123 22 Q 4433 2223 23 Q 4532 2122 21	5654 5433 35 D 5664 5322 33 Q 3432 2323 22 4541 2333 25 D 4443		4553 2124 26 4663 2234 30 2443 2123 21 Q 3311 1122 14		Q 0111 0123 09 D 6542 3525 32 5343 3264 30 D 5554 2353 32 5521 1154 24	01 02 03 04 05
06 07 08 09 10	Q 2331 2213 17 3343 3443 27 5463 4322 29 2212 3333 19 D 4545 5666 41	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35644555373443321525333421001621223531192323321521		2212 3535 23 3331 2355 25 5442 2334 27 4223 2034 20 D 3343 3227 27	3332 2234 22 2221 0055 17 D 0122 3256 21 4453 2364 31 D 2443 4454 30	06 07 08 09 10
11 12 13 14 15	D 6775 4746 46 D 6555 4564 40 D 4544 4336 33 3443 4344 29 3664 4345 35	4545 4335 33 5443 3215 27 4433 4622 28 Q 2332 2102 15 Q 1433 2222 19	4553 3212 25 3343 3345 28 5342 3221 22 Q 2223 2123 17 2221 1145 18	32433224235332322222454334453244424211222221233520	$ \begin{array}{cccccc} D & 3235 & 5445 & 31 \\ & 5454 & 3316 & 31 \\ & 5441 & 3210 & 20 \\ D & 3544 & 3465 & 34 \\ & 6643 & 2345 & 33 \\ \end{array} $	3333 2254 25 5422 2235 25 3543 3264 30 Q 4312 0134 18 Q 4211 1126 18	11 12 13 14 15
16 17 18 19 20	3443 3211 21 4453 3335 30 5532 3302 23 D 1223 4544 25 5653 3234 31	Q 4432 2422 23 3553 3445 32 4442 2355 29 3332 2222 19 4343 3325 27	Q 2221 2211 13 Q 3221 1222 15 4323 5344 28 D 5753 1123 27 2212 2433 19	3451 0055 23 D 4445 6574 39 D 6745 5746 44 D 6556 5658 46 D 8855 4555 45	4433 2244 26 5122 3225 22 4211 1276 24 3452 1000 15 1343 3221 19	33332225235331111318112224532034532256305543311426	16 17 18 19 20
21 22 23 24 25	5544 4343 32 4443 3323 26 5444 3364 33 4532 2334 26 4533 5554 34	3543 2235 27 4543 3254 30 Q 3542 1223 22 4543 3133 26 4233 3335 26	3443 2243 25 3542 0112 18 2222 4556 28 D 7644 4544 38 3522 1211 17	3332 2224 21 6633 3434 32 D 2773 3436 35 5333 2354 28 Q 4222 0112 14	6253 2102 21 2334 2343 24 D 3545 7746 41 Q 2211 0111 09 Q 2100 1112 08	45322344273232234625355432533043422245263431325627	21 22 23 24 25
26 27 28 29 30	5553 3334 31 6544 2334 31 4333 4334 27 5533 2223 25 Q 4322 3333 23	4443 3345 30 4332 3234 24 D 3664 3267 37	3434 3256 30 Q 2332 1133 18 Q 2311 0010 08 1221 1122 12 D 3553 3445 32	Q 2321 0013 12 3322 3355 26 6665 3353 37 3332 2356 27 3332 3322 21	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4311 2334 21 Q 3211 1100 09 Q 0010 0001 02 3211 1145 18 D 5533 3246 31	26 27 28 29 30
31 Mean	4542 1324 25 K-sum 28.9	27.4	D 4553 3375 35 23.6	25.3	Q 3211 1013 12 22.5	23.2	31
Date	Tesler	August	Contombor	October	Norromhor	December	Date
Date 01 02 03 04 05	July 5544 3242 29 Q 4331 2034 20 Q 3222 1252 19 Q 4210 1015 14 3333 2335 25	August D 2553 4333 28 D 7743 3666 42 5553 2235 30 4663 2111 24 Q 2221 0136 17 2	September 5441 2246 28 6443 2211 23 1122 1125 15 D 6675 4465 43 3533 3331 24	October D 3455 5557 39 D 5564 3656 40 6544 5566 41 D 6645 5576 44 5634 5655 39	November Q 4433 2333 25 D 6565 5464 41 D 4675 5765 45 4554 5646 39 D 4665 4455 39	December 5665 5545 41 4554 4465 37 4444 4354 32 4444 3334 28 5433 3334 28	Date 01 02 03 04 05
01 02 03 04	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} D & 2553 & 4333 & 28 \\ D & 7743 & 3666 & 42 \\ & 5553 & 2235 & 30 \\ & 4663 & 2111 & 24 \\ Q & 2221 & 0136 & 17 \\ Q & 3531 & 1024 & 19 \\ Q & 4331 & 2120 & 16 \\ & 1411 & 1044 & 16 \\ & 2332 & 3476 & 30 \\ & 4644 & 3347 & 35 \\ \end{array} $	$\begin{array}{ccccc} 5441 & 2246 & 28\\ 6443 & 2211 & 23\\ 1122 & 1125 & 15\\ D & 6675 & 4465 & 43\\ 3533 & 3331 & 24\\ 2433 & 3225 & 24\\ D & 3554 & 3766 & 39\\ D & 7653 & 0125 & 29\\ 3221 & 1265 & 22\\ 5454 & 4664 & 38\\ \end{array}$	D 3455 5557 39 D 5564 3656 40 6544 5566 41 D 6645 5576 44	Q 4433 2333 25 D 6565 5464 41 D 4675 5765 45 4554 5646 39 D 4665 4455 39 S554 43466 39 S534 3344 31 Q 2543 2242 24 Q 3332 2225 22 4573 2223 28	5665 5545 41 4554 4465 37 4444 4354 32 4444 4555 35 5433 3343 28 4433 3436 30 4653 4555 37 4653 4545 37 4653 4255 32 3432 2243 25	01 02 03 04 05 06 07 08 09 10
01 02 03 04 05 06 07 08 09	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} D & 2553 & 4333 & 28 \\ D & 7743 & 3666 & 42 \\ & 5553 & 2235 & 30 \\ & 4663 & 2111 & 24 \\ Q & 2221 & 0136 & 17 \\ Q & 3531 & 1024 & 19 \\ Q & 4331 & 2120 & 16 \\ & 1411 & 1044 & 16 \\ & 2332 & 3476 & 30 \\ \end{array} $	$\begin{array}{ccccc} 5441 & 2246 & 28\\ 6443 & 2211 & 23\\ 1122 & 1125 & 15\\ D & 6675 & 4465 & 43\\ 3533 & 3331 & 24\\ 2433 & 3225 & 24\\ D & 3554 & 3766 & 39\\ D & 7653 & 0125 & 29\\ 3221 & 1265 & 22\\ \end{array}$	D 3455 5557 39 D 5564 3656 40 6544 5566 41 D 6645 5576 44 5634 5655 39 D D 34 4665	Q 4433 2333 25 D 6565 5464 41 D 4675 5765 45 4554 5646 39 D 4665 4455 39 5554 4466 39 5534 314 Q 2543 2242 24 Q 3332 2225 22	5665 5545 41 4554 4465 37 4444 4354 32 4444 4555 35 5433 3343 28 4433 34265 37 4655 45455 37 4653 4545 36 5332 3243 25	01 02 03 04 05 06 07 08 09
01 02 03 04 05 06 07 08 09 10 11 12 13 14	$\begin{array}{cccccccc} 5544 & 3242 & 29\\ Q & 4331 & 2034 & 20\\ Q & 3222 & 1252 & 19\\ Q & 4210 & 1015 & 14\\ & 3333 & 2335 & 25\\ \hline & 6664 & 3668 & 45\\ 5443 & 3233 & 27\\ 5323 & 3226 & 26\\ 6543 & 3344 & 32\\ 4443 & 2246 & 29\\ 4222 & 1265 & 24\\ \hline & 4345 & 4432 & 29\\ 4535 & 2223 & 26\\ Q & 3212 & 1112 & 13\\ Q & 3111 & 1245 & 18\\ 2432 & 3554 & 37\\ \hline & 4543 & 3554 & 35\\ 4322 & 2101 & 15\\ 2113 & 2335 & 20\\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccc} 5441 & 2246 & 28 \\ 6443 & 2211 & 23 \\ 1122 & 1125 & 15 \\ 0 & 6675 & 4465 & 43 \\ 3533 & 3331 & 24 \\ 2433 & 3225 & 24 \\ 0 & 3554 & 3766 & 39 \\ 0 & 7653 & 0125 & 29 \\ 3221 & 1265 & 22 \\ 5454 & 4664 & 38 \\ 0 & 3456 & 3556 & 37 \\ 4653 & 3444 & 33 \\ 4654 & 324 & 32 \\ 4543 & 2333 & 27 \\ \end{array}$	D 3455 5577 39 D 5564 3656 40 6544 5566 41 D 6645 5576 44 5634 5655 39 D 5654 4335 35 Q 5333 2234 25 Q 3324 233 Q 4442 2342 25 4665 4524 36 5544 3553 34	Q 4433 2333 25 D 6565 5464 41 D 4675 5765 45 4554 5646 39 D 4665 4455 39 D 4665 4455 39 Q 5534 3446 31 Q 2543 2242 24 Q 3332 2225 22 4573 2223 28 3554 5344 32 3445 5355 34 5644 4354 35 5542 3433 29 4543 3244 29 Q 5432 2234 25	5665 5545 41 4554 4465 37 4444 4355 35 5433 3334 28 4444 4555 37 5433 3334 28 4465 4455 37 4653 4545 37 4653 4545 36 5332 3243 25 3432 2254 25 Q 3433 3223 23 Q 4433 3234 26 Q 3433 3223 23 Q 4332 2324 23 4544 3665 37	01 02 03 04 05 06 07 08 09 10 11 12 13 14
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19	$\begin{array}{cccccccc} 5544 & 3242 & 29\\ Q & 4331 & 2034 & 20\\ Q & 3222 & 1252 & 19\\ Q & 4210 & 1015 & 14\\ & 3333 & 2335 & 25\\ \hline & 6664 & 3668 & 45\\ 5443 & 3233 & 27\\ 5323 & 3226 & 26\\ 6543 & 3344 & 32\\ 4443 & 2246 & 29\\ 4222 & 1265 & 24\\ \hline & 4345 & 4432 & 29\\ 4535 & 2223 & 26\\ Q & 3212 & 1112 & 13\\ Q & 3111 & 1245 & 18\\ 2432 & 3554 & 37\\ \hline & 4543 & 3554 & 35\\ 4322 & 2101 & 15\\ 2113 & 2335 & 20\\ \end{array}$	D 2553 4333 28 D 7743 3666 42 5553 2235 30 4663 2111 24 Q 2221 0136 17 Q 3531 1024 19 Q 4331 2120 16 1411 1044 16 2332 3476 30 4644 3347 35 3442 4346 30 4543 3335 30 5443 3246 31 5333 4556 34 5455 4567 41 3563 3233 28 2553 3346 31 6542 2267 34 D 6774 3365 41 D 5652 2567 38 D 6755 4354 39 5431 1023 19 3332 2155 24 Q 4322 1244 22	$ \begin{smallmatrix} 5441 & 2246 & 28 \\ 6443 & 2211 & 23 \\ 1122 & 1125 & 15 \\ 0 & 6675 & 4465 & 43 \\ 2433 & 3225 & 24 \\ 0 & 3554 & 3766 & 39 \\ 0 & 7653 & 0125 & 29 \\ 3221 & 1265 & 22 \\ 5454 & 4664 & 38 \\ 0 & 3456 & 3556 & 37 \\ 4653 & 3444 & 33 \\ 4664 & 3243 & 32 \\ 4543 & 2333 & 27 \\ 4322 & 2343 & 23 \\ 3323 & 2112 & 17 \\ 2544 & 3334 & 30 \\ 3423 & 3654 & 30 \\ \end{array} $	D 3455 5557 39 D 5564 3656 41 D 6645 5576 41 D 6645 5576 49 D 6645 5576 49 D 6645 5576 49 D -5654 4665 -55 32 Q 3324 3322 23 Q 4442 2342 25 4665 4524 36 5553 3245 32 5553 2376 36 5443 4255 35 5553 2376 36 5443 3255 29 Q 3542 3553 29 4343 3434 28	Q 4433 2333 25 D 6565 5464 41 D 4675 5765 45 4554 5646 39 D 4665 4455 39 D 4665 4455 39 Q 5534 3446 31 Q 2543 2242 24 Q 3332 2225 22 4573 2223 28 3554 5344 35 5542 3654 5355 344 35 5642 3453 29 4543 4543 3244 29 29 Q 5432 2334 28 5545 3555 35 5543 Q 5432 2334 28 5543 3555 35 5543 5543 2566 36 D 6787 7767 55 D 6545 </td <td>5665 5545 41 4554 4465 37 4444 4555 35 5433 3334 28 4445 4455 37 4445 4455 37 4653 4545 37 4653 4545 37 4653 4545 36 5322 3243 25 Q 3433 3234 26 Q 4433 3234 26 Q 4332 2324 23 4544 3665 37 5543 4343 31 4443 3234 27 Q 4232 2222 18 D 4556 6563 40</td> <td>01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19</td>	5665 5545 41 4554 4465 37 4444 4555 35 5433 3334 28 4445 4455 37 4445 4455 37 4653 4545 37 4653 4545 37 4653 4545 36 5322 3243 25 Q 3433 3234 26 Q 4433 3234 26 Q 4332 2324 23 4544 3665 37 5543 4343 31 4443 3234 27 Q 4232 2222 18 D 4556 6563 40	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D 2553 4333 28 D 7743 3666 42 5553 2235 30 4663 2111 24 Q 2221 0136 17 Q 3531 1024 19 Q 4331 2120 16 1411 1044 16 2332 3476 30 4644 3347 35 3442 4346 30 4543 3335 30 5443 3246 31 5333 4556 34 5455 4567 41 3563 3233 28 2553 3346 31 6542 2267 34 D 6774 3365 41 D 5652 2567 38 D 6755 4354 39 5431 1023 19 3322 2155 24 Q 4322 1244 22 Q 4221 2115 18 4442 3455 31 3322 2155 24 Q 4222 2333 24 2655 3331 28	5441 2246 28 6443 2211 23 1122 1125 15 D 6675 4465 33 3533 3331 24 2433 3225 24 D 3554 3766 39 D 7653 0125 29 3221 1265 22 5454 4664 38 D 3456 3556 37 4653 3444 33 4664 3243 32 4543 2333 27 4322 2343 23 2544 33456 30 25454 3334 28 6434 3334 30 3423 3654 30 2 4321 1114 17 3223 2322 19 4321 2445 25 2 2 3221 1000 09	D 3455 5557 39 D 5564 3656 41 D 6645 5566 41 D 6645 5565 39 D -5654 4355 35 Q 3324 3322 23 Q 4442 2342 25 4665 4553 34 Q 3333 374 29 5553 2376 36 5443 4255 35 5553 2376 36 5443 3434 28 D 5565 6775 46 6665 5556 41 3555 5663 38 D 5565 5666 38 5565 5566 38	Q 4433 2333 25 D 6565 5464 41 D 4675 5765 45 4554 5646 39 5554 4465 39 5554 3444 31 Q 2543 2242 24 Q 3322 2225 22 4573 2233 28 3545 5344 355 54 5644 4354 35 542 3445 5355 34 3244 Q 5432 2234 29 4543 3244 29 4543 3244 Q 5432 2334 28 5545 3555 37 4654 3355 35 Q 5432 2234 25 35 5543 2566 36 Q 6545 3555 37 4654 355 35 5543 2566	5665 5545 41 4554 4465 37 4444 4555 35 5433 3342 28 4443 3436 30 4445 4555 37 4653 4545 36 5322 3234 25 33342 2232 23 Q 4333 3234 26 Q 4333 3234 26 Q 4333 2324 23 Q 4333 2324 23 Q 4332 2324 23 Q 4332 2232 23 Q 4322 2222 18 D 4556 6563 40 D 4555 5565 43 D 4555 5443 30 D 6666 5365 43 D 5565 547 45 4555 5654 36	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D 2553 4333 28 D 7743 3666 42 5553 2235 30 4663 2111 24 Q 2221 0136 17 Q 3531 1024 19 Q 4331 2120 16 1411 1044 16 2332 3476 30 4644 3347 35 3442 4346 30 4543 3335 30 5443 3246 31 5333 4556 34 5455 4567 41 3563 3233 28 2553 3346 31 6542 2267 34 D 6774 3365 41 D 5652 2567 38 D 6755 4354 39 5431 1023 19 3332 2155 24 Q 4322 1244 22 Q 4221 2115 18 4442 3455 31 4652 333 24	5441 2246 28 6443 2211 23 1122 1125 15 D 6675 4465 33 3533 3331 24 2433 3225 24 D 3554 3766 39 D 7653 0125 29 3221 1265 22 D 3456 3564 30 D 3456 3544 33 4664 3243 32 4464 3323 2112 17 2544 3334 28 6434 3334 28 6434 334 30 3423 3654 30 2 322 22 22 2 2 3221 1114 17 3223 2322 1 2 3 2 Q 1221 122 11 2 1 2 3 2 3 2 <t< th=""><th>D 3455 5557 39 D 5564 3656 41 D 6645 5576 41 D 6645 5576 41 D 6645 5576 41 D 6645 5576 49 D - - - - - - - - -5654 4335 355 Q 3324 3322 23 Q 4442 2342 25 4665 4553 36 5544 3553 324 32 S555 3245 35 35 5553 2376 36 34 S443 3434 28 35 Q 3543 3535 29 4343 3434 28 D 5565 5766</th><th>Q 4433 2333 25 D 6565 5464 41 D 4675 5765 45 4554 5646 39 5554 34465 31 Q 2543 2242 24 Q 3322 2223 28 3554 5344 32 34 Q 3322 2223 28 3545 5343 32 3445 5644 4354 35 5542 3445 5355 34 5644 5644 4354 35 5542 3433 29 4543 3244 29 4543 3555 37 4554 3555 37 4654 3355 35 5543 2566 43 5554 4464 37 4555 5665 41 5455 44645 36</th><th>5665 5545 41 4554 4465 37 4444 4555 35 5433 3334 28 4443 3436 30 4445 4555 37 4653 4545 36 5322 3234 25 33342 2232 23 Q 4333 3234 26 Q 4333 3234 26 Q 4333 3234 26 Q 4333 3234 26 Q 4333 2242 23 4544 3665 37 5543 4343 31 4443 2222 18 D 4556 6563 40 D 4553 5566 43 D 4555 5443 30 D 5565 4463 36 D 4555 56543 37 5545<</th><th>01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29</th></t<>	D 3455 5557 39 D 5564 3656 41 D 6645 5576 41 D 6645 5576 41 D 6645 5576 41 D 6645 5576 49 D - - - - - - - - -5654 4335 355 Q 3324 3322 23 Q 4442 2342 25 4665 4553 36 5544 3553 324 32 S555 3245 35 35 5553 2376 36 34 S443 3434 28 35 Q 3543 3535 29 4343 3434 28 D 5565 5766	Q 4433 2333 25 D 6565 5464 41 D 4675 5765 45 4554 5646 39 5554 34465 31 Q 2543 2242 24 Q 3322 2223 28 3554 5344 32 34 Q 3322 2223 28 3545 5343 32 3445 5644 4354 35 5542 3445 5355 34 5644 5644 4354 35 5542 3433 29 4543 3244 29 4543 3555 37 4554 3555 37 4654 3355 35 5543 2566 43 5554 4464 37 4555 5665 41 5455 44645 36	5665 5545 41 4554 4465 37 4444 4555 35 5433 3334 28 4443 3436 30 4445 4555 37 4653 4545 36 5322 3234 25 33342 2232 23 Q 4333 3234 26 Q 4333 3234 26 Q 4333 3234 26 Q 4333 3234 26 Q 4333 2242 23 4544 3665 37 5543 4343 31 4443 2222 18 D 4556 6563 40 D 4553 5566 43 D 4555 5443 30 D 5565 4463 36 D 4555 56543 37 5545<	01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Occurrence distribution of K-indices

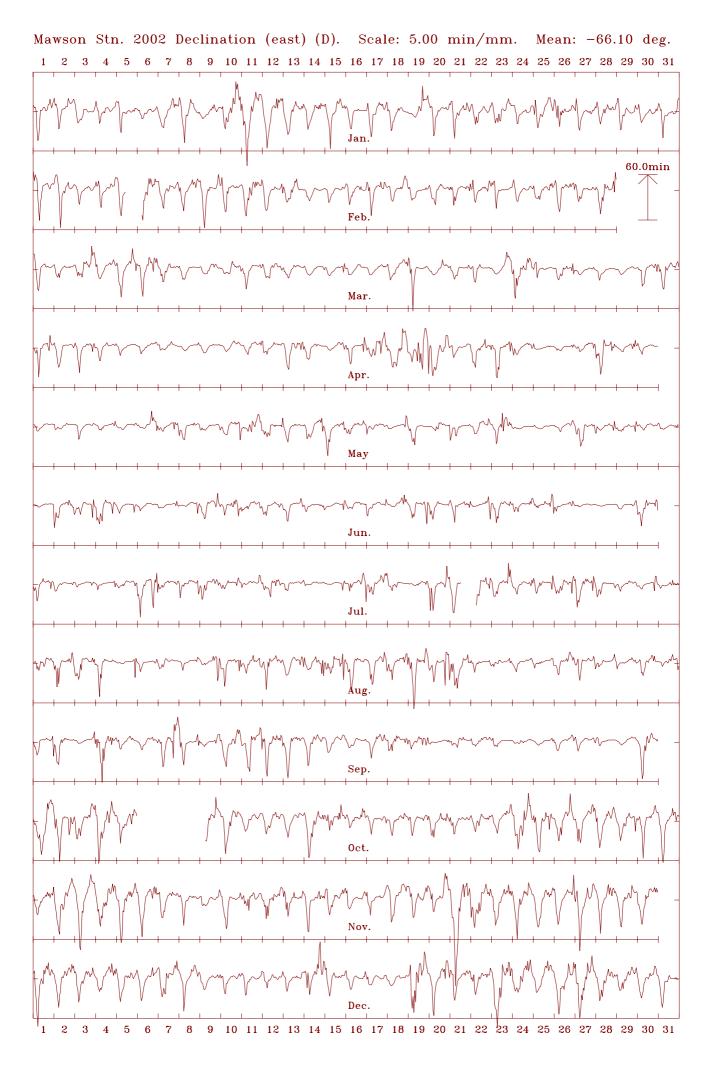
K-Index:	0	1	2	3	4	5	6	7	8	9	-
January	1	9	33	78	70	38	16	3	0	0	0
February	1	6	45	66	52	36	10	2	0	0	6
March	7	33	64	63	37	34	7	3	0	0	0
April	10	26	59	56	33	31	17	5	3	0	0
May	13	40	59	59	38	27	8	4	0	0	0
June	14	36	49	57	38	36	10	0	0	0	0
July	4	21	53	59	46	36	17	5	1	0	6
August	5	23	41	64	41	39	24	11	0	0	0
September	6	37	51	56	43	24	19	4	0	0	0
October	0	0	14	48	48	72	33	7	0	0	26
November	0	0	20	41	66	72	29	11	1	0	0
December	0	0	26	56	80	57	27	2	0	0	0
ANNUAL TOTAL	61	231	514	703	592	502	217	57	5	0	38

Monthly & Annual Mean Values

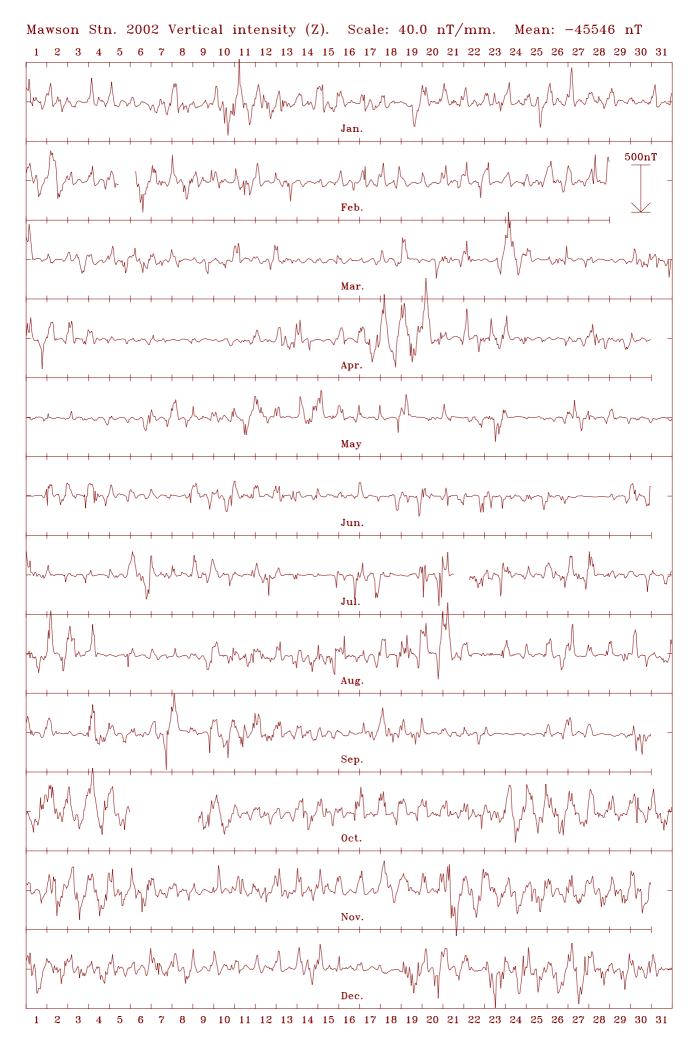
The following table gives final monthly and annual mean values of each of the magnetic elements for the year.

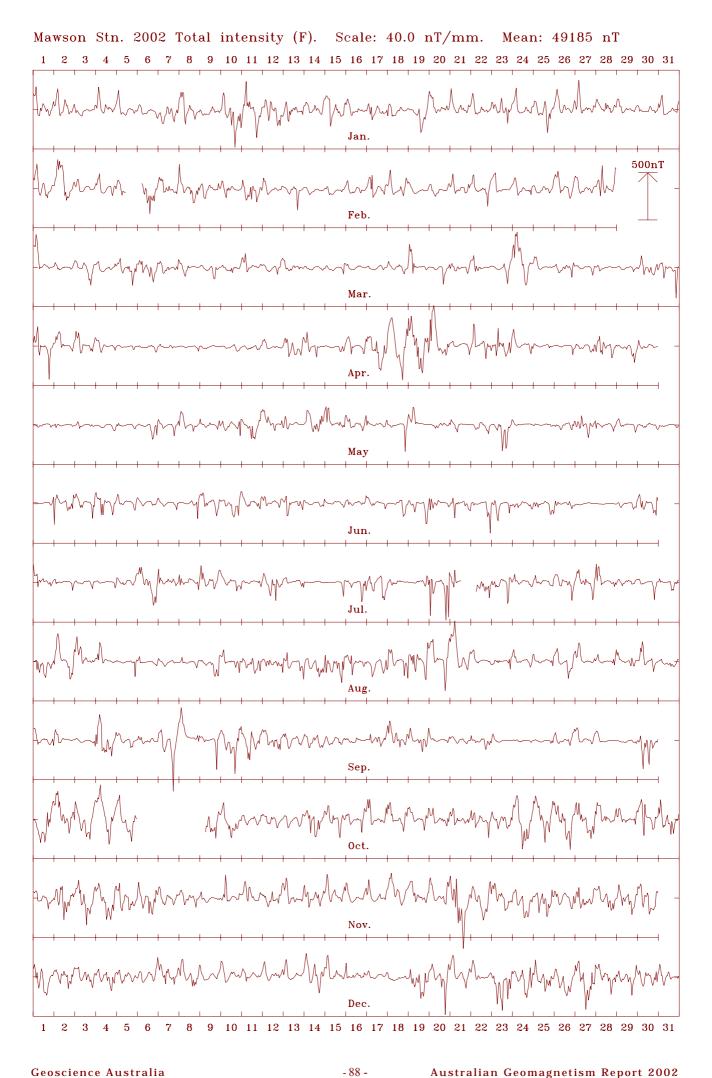
A value is given for means computed from all days in each month (All days), the five least disturbed of the International Quiet days (5xQ days) in each month and the five International Disturbed days (5xD days) in each month.

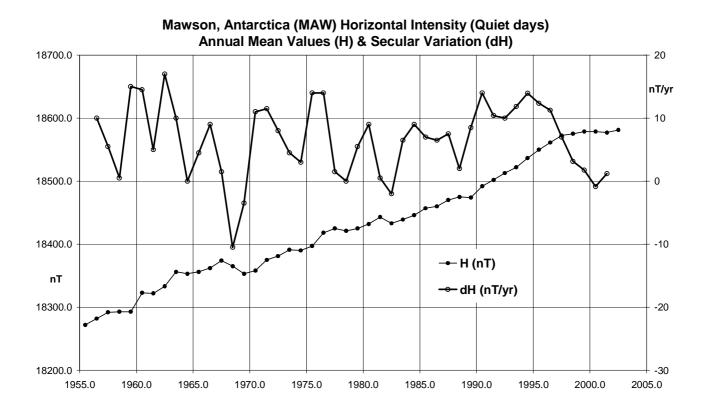
awson Antarcti	ca 2002	X (nT)	Y (nT)	Z (nT)	F (nT)	H (nT)	D (East)	I.
January	All days	7574.2	-16982.3	-45556.0	49205.0	18594.9	-65° 57.8'	-67° 47.8'
	5xQ days	7568.6	-16979.3	-45556.5	49203.4	18589.8	-65° 58.5'	-67° 48.1'
	5xD days	7571.9	-16965.8	-45525.9	49171.1	18579.1	-65° 57.0'	-67° 48.0'
February	All days	7555.3	-16976.1	-45560.5	49204.1	18581.5	-66° 00.5'	-67° 48.7'
	5xQ days	7554.6	-16981.4	-45551.9	49197.7	18586.0	-66° 01.0'	-67° 48.2'
	5xD days	7555.3	-16982.3	-45576.4	49221.1	18587.3	-66° 01.0'	-67° 48.8'
March	All days	7540.2	-16973.5	-45543.6	49185.1	18573.0	-66° 02.9'	-67° 48.8'
	5xQ days	7541.1	-16985.6	-45532.9	49179.5	18584.4	-66° 03.6'	-67° 47.8'
	5xD days	7526.5	-16959.1	-45563.7	49196.8	18554.4	-66° 04.1'	-67° 50.6'
April	All days	7520.2	-16966.9	-45547.6	49183.6	18558.9	-66° 05.8'	-67° 49.9'
	5xQ days	7534.5	-16982.6	-45534.4	49178.9	18579.0	-66° 04.5'	-67° 48.2'
	5xD days	7482.9	-16921.8	-45583.2	49195.6	18502.8	-66° 08.7'	-67° 54.4'
Мау	All days	7520.3	-16971.9	-45545.8	49183.6	18563.5	-66° 06.1'	-67° 49.5'
	5xQ days	7530.4	-16987.9	-45536.7	49182.2	18582.1	-66° 05.6'	-67° 48.1'
	5xD days	7506.3	-16947.5	-45545.8	49173.1	18535.5	-66° 06.7'	-67° 51.3'
June	All days	7520.8	-16977.6	-45529.1	49170.2	18568.9	-66° 06.5'	-67° 48.7'
	5xQ days	7529.2	-16985.8	-45529.2	49174.4	18579.8	-66° 05.6'	-67° 48.0'
	5xD days	7503.7	-16962.4	-45536.1	49168.9	18548.1	-66° 08.2'	-67° 50.3'
July	All days	7515.3	-16976.2	-45527.6	49167.5	18565.4	-66° 07.3'	-67° 48.9'
ŧ	5xQ days	7525.1	-16983.0	-45524.8	49168.7	18575.5	-66° 06.1'	-67° 48.2'
	5xD days	7498.2	-16973.4	-45523.1	49159.9	18556.0	-66° 10.0'	-67° 49.4'
August	All days	7498.3	-16961.9	-45550.7	49181.4	18545.5	-66° 09.1'	-67° 50.8'
	5xQ days	7513.6	-16979.7	-45540.8	49180.6	18567.9	-66° 07.8'	-67° 49.1'
	5xD days	7469.0	-16927.1	-45595.5	49206.6	18501.9	-66° 11.5'	-67° 54.8'
September	All days	7501.0	-16968.5	-45545.8	49179.5	18552.6	-66° 09.1'	-67° 50.2'
	5xQ days	7515.9	-16987.1	-45533.5	49176.7	18575.5	-66° 08.0'	-67° 48.4'
	5xD days	7473.9	-16936.6	-45554.7	49172.8	18512.6	-66° 11.4'	-67° 53.0'
October	All days	7497.3	-16964.0	-45567.6	49197.7	18547.1	-66° 09.4'	-67° 51.1'
	5xQ days	7516.1	-16990.4	-45545.8	49189.4	18578.7	-66° 08.2'	-67° 48.5'
	5xD days	7461.4	-16928.1	-45596.7	49207.0	18499.8	-66° 12.8'	-67° 55.0'
November	All days	7515.0	-16983.4	-45552.0	49192.7	18572.0	-66° 07.9'	-67° 49.1'
	5xQ days	7523.5	-16991.0	-45553.6	49197.9	18582.2	-66° 07.0'	-67° 48.5'
	5xD days	7482.1	-16960.9	-45531.6	49161.3	18538.5	-66° 11.9'	-67° 50.8'
December	All days	7526.2	-16995.7	-45525.1	49173.6	18587.8	-66° 06.9'	-67° 47.4'
	5xQ days	7528.0	-16999.9	-45539.9	49189.0	18592.1	-66° 06.9'	-67° 47.5'
	5xD days	7513.3	-16975.9	-45485.8	49128.6	18564.6	-66° 07.6'	-67° 47.8'
Annual	All days	7523.7	-16974.8	-45546.0	49185.3	18567.6	-66° 05.8'	-67° 49.3'
Mean	5xQ days	7531.7	-16986.1	-45540.0	49184.9	18581.1	-66° 05.2'	-67° 48.2'
Values	5xD days	7503.7	-16953.4	-45551.6	49180.2	18540.0	-66° 07.6'	-67° 51.2'

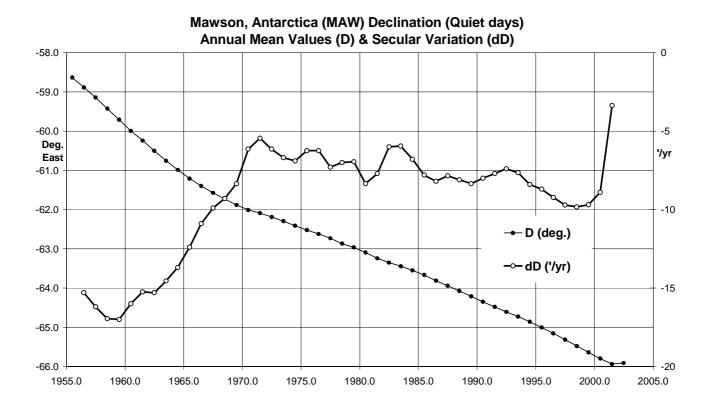

(Calculated: 14:53 hrs., Thu. 24 Jun. 2004)

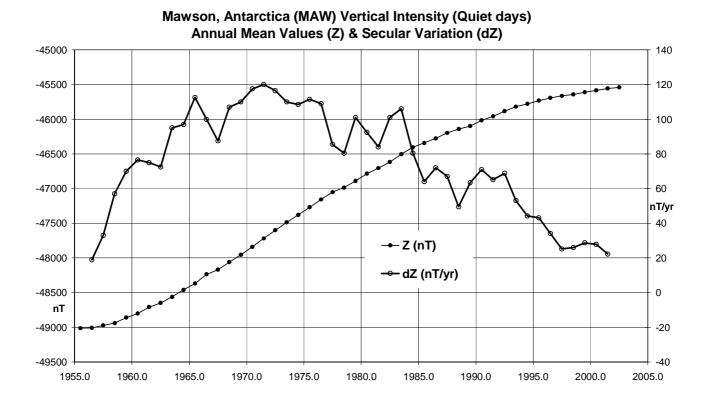
Hourly Mean Values

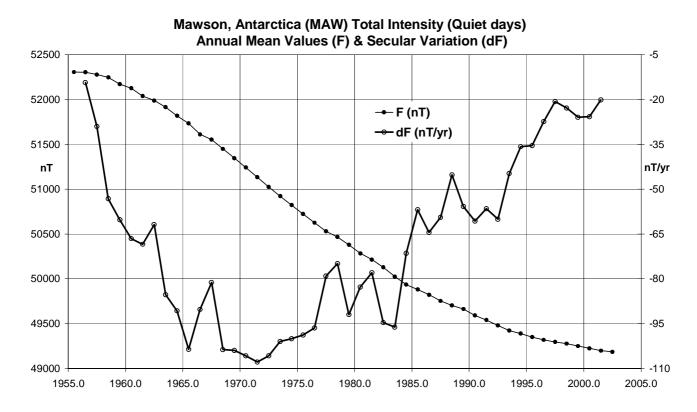

The charts on the following pages are plots of hourly mean values.


The reference levels indicated with marks on the vertical axes refer to the *all-days* mean value for the respective months. All elements in the plots are shown increasing (algebraically) towards the top of the page, with the exception of Z, which is in the opposite sense. The mean value given at the top of each plot is the *all-days* annual mean value of the element.






Australian Geomagnetism Report 2002



MAW – Notes and Errata (cumulative since AGR'93)

In *AGR1998* through to *AGR2001* the principle azimuth mark at Mawson (MAW) was reported as being BMR89/2 at an azimuth of 19° 14.0' and distance of 105m from principle

observation Pier A. This mark ceased to be used after May 1998, from when mark BMR89/1 was principally used.

Casey is the Australian Antarctic station nearest to Australia, situated 3880km south of Perth. The magnetic absolute hut is about 120 metres south of the tank house, the structure of the modern station nearest to it. The old Casey station, in use until the late 1980s, lies about 1km to the north-east of the present Casey.

The crystalline rocks of Casey have unusually high concentrations of magnetic minerals producing high magnetic gradients in and around the magnetic absolute hut.

The original station in the vicinity was Wilkes, established under the US Antarctic Research Program for the 1957-58 IGY, after which it was operated by ANARE. Wilkes was abandoned in 1968, having been replaced by (the old) Casey station which lies 3km across Newcomb Bay to its south west.

Key data for the principal observation pier of the Casey Station are:

- 3-character IAGA code: CSY
- Geographic latitude: 66° 17' S
- Geographic longitude: 110° 32' E
- Geomagnetic[†]: Lat. -76.42°; Long. 183.77°
 † Based on the IGRF 2000.0 model updated to 2002.5
- Elevation above mean sea level (top of observation pier) 40 metres
- Azimuth of reference pillar (G11) from observation pier 307° 41' 02"
- Observer in Charge: Max Paterson (AAD)

History

A magnetic observatory was established at Wilkes (a few kilometres from where Casey now stands) by the US Antarctic Research Program for the 1957-58 IGY. It was subsequently operated by BMR and ANARE (McGregor, 2000) until the instrumentation was returned to the USA in 1968.

To provide information on the magnetic secular variation in Antarctica, BMR/ASGO/GA and the Australian Antarctic Division have jointly carried out regular absolute measurements of the magnetic field at Casey since 1975. The observations have been performed by Antarctic Division personnel, who were trained in the use of the instrumentation at GA in Canberra.

Until the Australian Antarctic Division installed an EDA FM105B fluxgate variometer in January 1988 to support their Atmospheric and Space Physics research program at Casey, monthly means were calculated from absolute observations without correction for daily field variations. These data, although exhibiting scatter, enabled the estimation of the secular variation trend from year to year at the station.

From 1991 to 1998 the digital variometer data and monthly absolute observations were made available to the GA observer at Mawson, who derived baselines and produced monthly mean

values of the magnetic field (De Deuge, 1992) for Casey (and Davis). These monthly mean values, based on the five quietest days of the month (at Mawson), were provided to WDC-A. Although during this period the variometers at Casey (and Davis) were not operated to observatory standards, the monthly means derived from the variometer data were a significant improvement on those derived from the previous absolute observations only. Since 1998 the calculation of monthly means has been carried out at GA using International Quiet Days.

Until March 1999 two absolute observations were performed at Casey each month. On 22 March 1999 full absolute control began that included the performance of twice-weekly absolute observations and from when the operation was upgraded to full observatory status.

Variometers

An Antarctic Division EDA FM105B fluxgate variometer, with the data acquired by PC, operated at Casey throughout 2002. The fluxgate sensors were housed on the hill about 300m west of the Casey Science building. Their sensors were aligned close to true north, east and vertical. The temperatures were maintained at 20°C. Further description is in Crosthwaite (1999).

Absolute Instruments and Corrections

Magnetometers used to calibrate the recording variometers were Elsec 810 DIM no. 2591 with Zeiss020B theodolite no. 356514 owned by the Antarctic Division, and Geometrics 816 no. 1024 PPM, owned by GA. A QHM and QHM circles were available as a backup in the event that one of the primary instruments became unserviceable.

For standardization with the Australian Magnetic Standard held at Canberra, a correction of +1.2nT has been applied to the absolute PPM readings. Corrections of zero were applied to the DIM readings. These resulted in baseline corrections of:

$$\Delta X = -0.01 \text{ nT}$$
 $\Delta Y = -0.18 \text{ nT}$ $\Delta Z = -1.19 \text{ nT}.$

Because of the extreme magnetic gradients at Casey, it has been necessary to apply a correction to magnetic data from the station acquired since early 1993. QHMs were used at Casey until 1993, and DIMs since that time. The 70mm difference in sensor heights of the two instruments required the following corrections to DIM/PPM readings to produce equivalent QHM/PPM readings (PPM height similarly adjusted):

$$\Delta D = +15.1' \qquad \Delta I = +0.2' \qquad \Delta F = +45 \text{ nT}$$

(\Delta X = +42 nT \Delta Y = -11 5 nT \Delta Z = -44 nT)

It desirable that a new absolute observation hut and pier is located on a more suitable site. A site with gradients of about 10nT per metre was chosen during a maintenance visit by a GA officer in the 1998/99 summer (Crosthwaite 1999).

Casey Annual Mean Values

The table below gives annual mean values for Casey station. Until 1990 these were calculated using the monthly average values of regular absolute observations, denoted by AB. From 1991 they were gained using data from the AAD's fluxgate variometer that was calibrated through regular absolute observations. Until 1997 the means were calculated over the five quietest days at Mawson station, denoted QM. From 1998 monthly means were calculated over **All** days, the 5 International **Quiet** days and the 5 International **Disturbed** days in each month, denoted A, Q and D respectively.

Year	Days	[(Deg) Min)	(Deg	l Min)	H (nT)	X (nT)	Ү (nT)	Z (nT)	F (nT)	Elts*
1977.96	Ав	-88	29.6	-81	38.7	9495	250	-9492	-64650	65344	DHZ
1978.5	Ав	-89	4.3	-81	36.2	9518	154	-9516	-64488	65187	DHZ
1979.5	Ав	-89	21.6	-81	35.7	9525	106	-9524	-64469	65169	DHZ
1980.5	Ав	-89	31.5	-81	33.9	9568	79	-9568	-64528	65233	DHZ
1981.5	Ав	-88	2.1	-81	32.0	9540	327	-9534	-64083	64789	DHZ
1982.5	AB	-90	10.0	-81	28.4	9650	-28	-9650	-64400	65120	DHZ
1983.5	Ав	-90	32.0	-81	31.5	9585	-89	-9585	-64326	65037	DHZ
1984.5	Ав	-90	50.0			9640	-140	-9639			DHZ
1985.5	Ав	-90	50.0	-81	25.9	9650	-140	-9649	-64067	64790	DHZ
1986.5	Ав	-90	52.9	-81	27.2	9634	-148	-9633	-64101	64821	DHZ
1987.5	Ав	-91	18.6	-81	29.1	9596	-219	-9593	-64097	64811	DHZ
1988.5	Ав	-91	28.4	-81	27.2	9630	-248	-9627	-64086	64805	DHZ
1989.5	Ав	-90	45.5	-81	23.5	9672	-128	-9671	-63887	64615	DHZ
1990.5	Ав	-91	55.0	-81	27.4	9601	-321	-9596	-63920	64637	DHZ
1991.5	Qм	-92	1.2	-81	25.0	9642	-340	-9636	-63881	64605	XYZ
1992.5	Qм	-92	10.0	-81	25.0	9637	-364	-9630	-63848	64571	XYZ
1993.5	Qм	-92	7.3	-81	25.0	9638	-357	-9631	-63852	64576	XYZ
1994.5	Qм	-92	17.1	-81	25.3	9629	-384	-9621	-63824	64547	XYZ
1995.5	Qм	-92	27.5	-81	25.6	9620	-413	-9611	-63807	64528	XYZ
1996.5	Qм	-92	35.4	-81	25.3	9625	-435	-9615	-63804	64526	XYZ
1997.5	Qм	-92	42.1	-81	25.2	9623	-454	-9612	-63774	64496	XYZ
1998.5	Q	-92	55.4	-81	25.7	9614	-490	-9601	-63777	64497	XYZ
1999.5	Q	-93	4.9	-81	26.5	9595	-516	-9581	-63762	64480	XYZ
2000.5	Q	-93	12.9	-81	27.0	9584	-537	-9568	-63749	64465	XYZ
2001.5	Q	-93	21.6	-81	27.9	9564	-561	-9548	-63729	64443	XYZ
2002.5	Q	-93	26.1	-81	28.3	9553	-572	-9536	-63708	64421	XYZ
1998.5	Α	-92	55.4	-81	25.7	9615	-490	-9602	-63785	64505	XYZ
1999.5	Α	-93	4.8	-81	26.4	9599	-516	-9585	-63772	64490	XYZ
2000.5	Α	-93	13.2	-81	27.0	9587	-538	-9571	-63759	64476	XYZ
2001.5	Α	-93	21.6	-81	27.9	9566	-561	-9549	-63733	64447	XYZ
2002.5	Α	-93	29.4	-81	28.4	9553	-582	-9535	-63719	64432	XYZ
1998.5	D	-92	58.2	-81	25.8	9615	-498	-9601	-63805	64526	XYZ
1999.5	D	-93	10.7	-81	26.6	9599	-532	-9583	-63796	64514	XYZ
2000.5	D	-93	13.6	-81	27.0	9588	-539	-9572	-63771	64487	XYZ
2001.5	D	-93	19.4	-81	27.8	9570	-555	-9553	-63746	64460	XYZ
2002.5	D	-93	37.4	-81	28.8	9549	-603	-9529	-63747	64458	XYZ

Plots of these data with secular variation in H, D, Z & F are on the pages 98-99.

Casey Operations

The magnetic observer-in-charge at Casey in 2002 was an officer of the Australian Antarctic Division, of the Department of The Environment and Heritage. He was a member of the Australian National Antarctic Research Expedition (ANARE). GA partially funded the position to enable the operation of the magnetic observatory to continue.

The magnetic observer performed approximately weekly absolute observations on the observation piers in the Absolute House to calibrate the variometers and provided regular reports to GA headquarters in Canberra.

The EDA variometer produced 1-second samples that were recorded on an AAD computer via their Analogue Data Acquisition System (ADAS). These were sent to GA where they were converted into GA 1-second format from which calibrated minute, monthly and annual means were computed.

There was no PPM variometer operating at Casey in 2002.

Significant Events: CSY, 2002

Nov 15 PPM head came off the wooden mounting block and fell to the floor heavily before taking the last PPM measurement.

Distribution of CSY data during 2002

Preliminary Monthly Means for Project Ørsted

- Some data sent in 2002
- 1-minute & Hourly Mean Values (WDC format)
- 2001: WDC-A, Boulder, USA (sent 11 Jun. 2002)

1-minute Values (INTERMAGNET format)

• 2001: WDC-C1, Copenhagen, Denmark (sent 11 Jun. 2002)

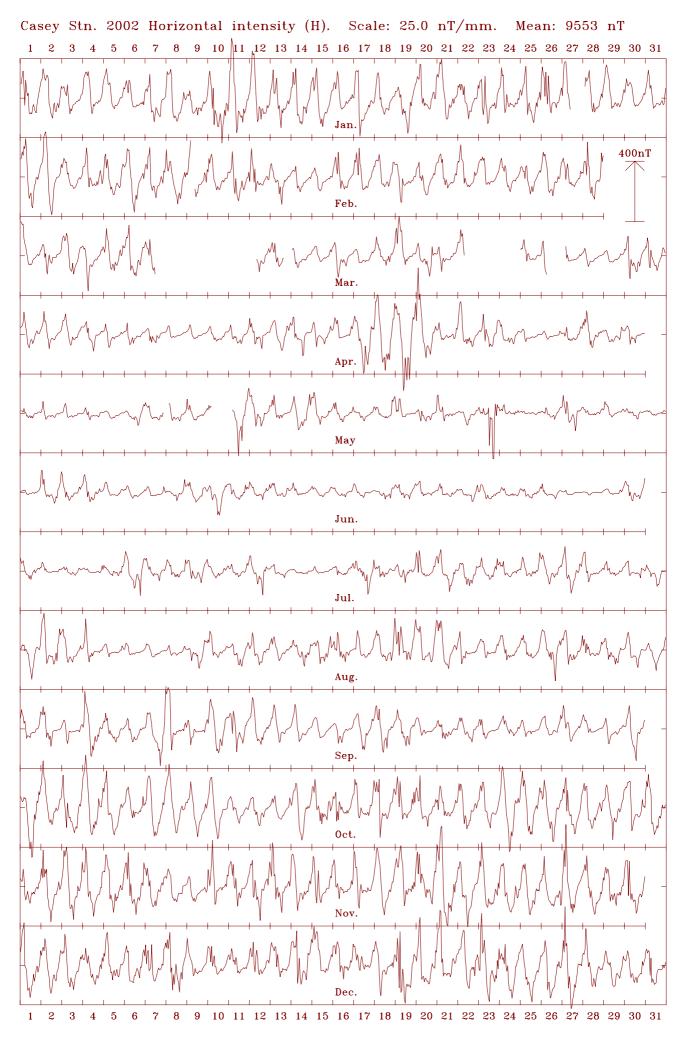
Enquiries for variation data from Casey in 1997 or earlier should be directed to the Atmospheric and Space Physics Section of the Australian Antarctic Division, Channel Highway, Kingston, Tasmania.

Monthly & Annual Mean Values

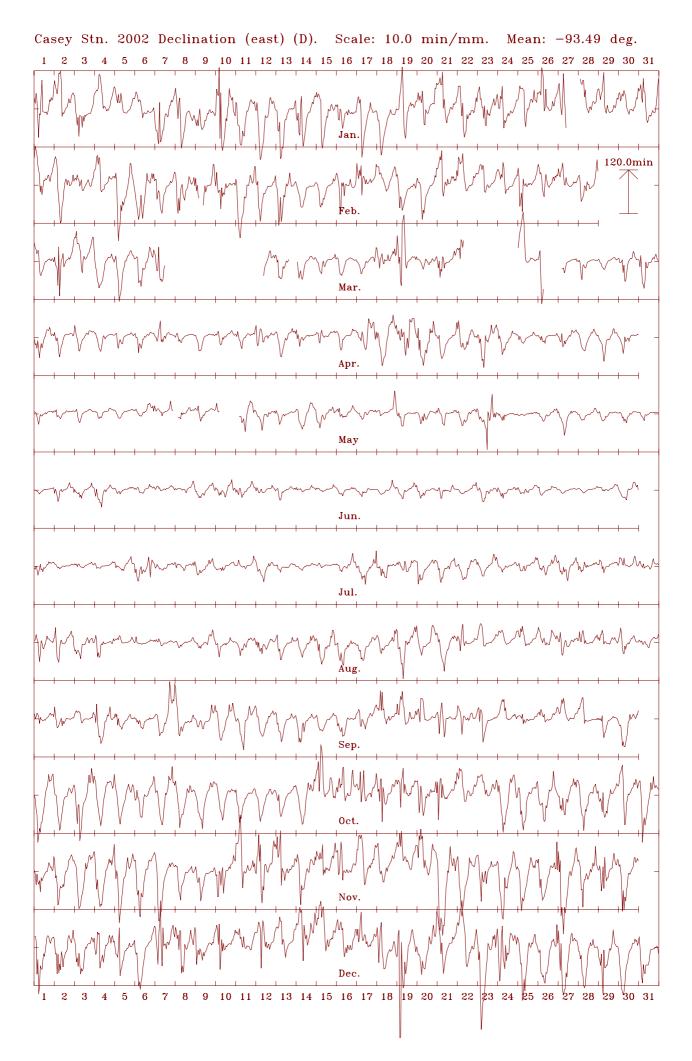
The following table gives final monthly and annual mean values of each of the magnetic elements for the year.

A value is given for means computed from all days in each month (All days), the five least disturbed of the International Quiet days (5xQ days) in each month and the five International Disturbed days (5xD days) in each month.

				Z (nT)	F (nT)	H (nT)	D (East)	
January	All days	-524.4	-9561.6	-63682.1	64398.2	9576.7	-93° 08.5'	-81° 26.9'
	5xQ days	-494.8	-9580.8	-63669.2	64388.0	9593.9	-92° 57.5'	-81° 25.9'
	5xD days	-571.2	-9536.8	-63735.1	64447.5	9555.0	-93° 25.5'	-81° 28.4'
February	All days	-563.5	-9551.9	-63698.0	64412.8	9569.1	-93° 22.7'	-81° 27.4'
	5xQ days	-568.0	-9550.4	-63693.3	64407.9	9567.5	-93° 24.3'	-81° 27.4'
	5xD days	-596.7	-9551.1	-63717.7	64432.6	9570.6	-93° 34.5'	-81° 27.5'
March	All days	-588.2	-9534.2	-63716.3	64428.4	9552.7	-93° 31.9'	-81° 28.4'
	5xQ days	-602.0	-9520.1	-63714.6	64424.8	9539.2	-93° 37.1'	-81° 29.1'
	5xD days	-593.9	-9542.1	-63744.2	64457.4	9561.2	-93° 33.8'	-81° 28.2'
April	All days	-598.5	-9525.2	-63732.9	64443.7	9544.2	-93° 35.7'	-81° 29.0'
	5xQ days	-597.3	-9524.0	-63728.7	64439.2	9542.8	-93° 35.3'	-81° 29.0'
	5xD days	-595.7	-9517.8	-63746.0	64455.6	9536.9	-93° 34.9'	-81° 29.5'
Мау	All days	-598.9	-9522.7	-63733.8	64444.1	9541.6	-93° 35.9'	-81° 29.1'
	5xQ days	-599.6	-9525.0	-63729.9	64440.5	9543.9	-93° 36.1'	-81° 29.0'
	5xD days	-610.0	-9513.2	-63751.7	64460.5	9533.0	-93° 40.1'	-81° 29.7'
June	All days	-593.3	-9529.1	-63722.2	64433.5	9547.6	-93° 33.8'	-81° 28.7'
	5xQ days	-589.6	-9530.6	-63715.7	64427.2	9548.8	-93° 32.4'	-81° 28.6'
	5xD days	-594.9	-9528.9	-63725.2	64436.5	9547.5	-93° 34.3'	-81° 28.7'
July	All days	-595.1	-9527.2	-63722.3	64433.4	9545.8	-93° 34.5'	-81° 28.8'
	5xQ days	-589.6	-9528.7	-63713.2	64424.5	9546.9	-93° 32.4'	-81° 28.7'
	5xD days	-611.9	-9518.0	-63739.3	64449.0	9537.8	-93° 40.7'	-81° 29.4'
August	All days	-590.0	-9532.5	-63730.3	64442.0	9550.9	-93° 32.5'	-81° 28.6'
	5xQ days	-570.6	-9530.9	-63705.6	64417.2	9548.1	-93° 25.6'	-81° 28.6'
	5xD days	-597.3	-9548.4	-63756.5	64470.4	9567.4	-93° 34.8'	-81° 27.9'
September	All days	-587.4	-9530.4	-63731.4	64442.8	9548.8	-93° 31.6'	-81° 28.7'
	5xQ days	-578.0	-9528.1	-63710.3	64421.4	9545.8	-93° 28.3'	-81° 28.7'
	5xD days	-605.1	-9528.8	-63768.5	64479.5	9548.5	-93° 38.0'	-81° 29.0'
October	All days	-590.1	-9539.0	-63741.9	64454.6	9557.8	-93° 32.4'	-81° 28.3'
	5xQ days	-589.7	-9532.9	-63732.4	64444.3	9551.6	-93° 32.5'	-81° 28.6'
	5xD days	-613.0	-9540.2	-63770.1	64483.0	9560.7	-93° 40.6'	-81° 28.4'
November	All days	-578.7	-9530.3	-63724.0	64435.6	9548.9	-93° 28.6'	-81° 28.7'
	5xQ days	-568.7	-9523.5	-63715.7	64426.1	9541.0	-93° 25.2'	-81° 29.0'
	5xD days	-628.1	-9522.9	-63768.8	64479.3	9545.0	-93° 46.2'	-81° 29.2'
December	All days	-569.4	-9530.2	-63697.4	64409.1	9548.3	-93° 25.3'	-81° 28.5'
	5xQ days	-517.5	-9551.5	-63669.9	64384.6	9565.9	-93° 06.2'	-81° 27.3'
	5xD days	-623.1	-9503.4	-63736.2	64444.3	9525.6	-93° 45.1'	-81° 30.0'
Annual	All days	-581.5	-9534.5	-63719.4	64431.5	9552.7	-93° 29.4'	-81° 28.4'
Mean	5xQ days	-572.1	-9535.5	-63708.2	64420.5	9552.7 9552.9	-93° 29.4 -93° 26.1'	-81° 28.3'
Values	5xQ days 5xD days	-603.4	-9529.3	-63746.6	64458.0	9532.9 9549.1	-93° 20.1 -93° 37.4'	-81° 28.8'

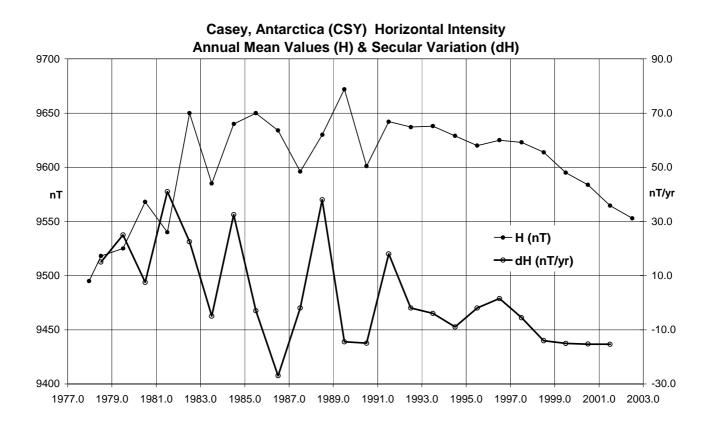

(Calculated: 12:22 hrs., Thu., 01 Jul. 2004)

Hourly Mean Values

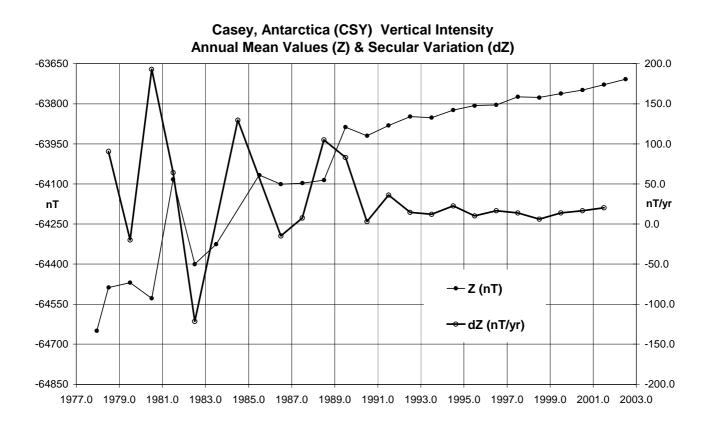

The charts on the following pages are plots of hourly mean values.

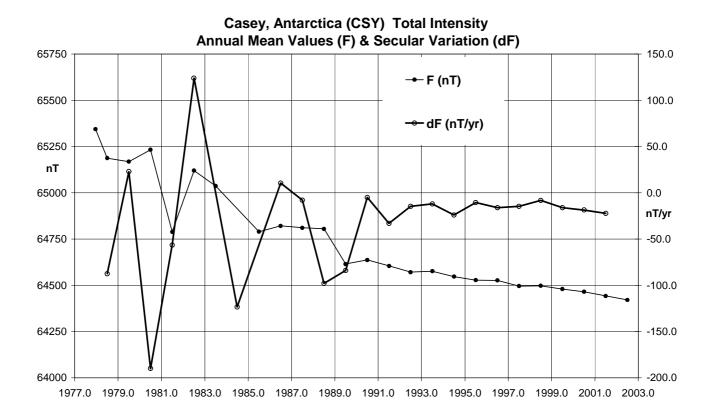
The reference levels indicated with marks on the vertical axes refer to the *all-days* mean value for the respective months. All elements in the plots are shown increasing (algebraically) towards the top of the page, with the exception of Z, which is in the opposite sense.

The mean value given at the top of each plot is the *all-days* annual mean value of the element.



Australian Geomagnetism Report 2002





Casey, Antarctica (CSY) Declination Annual Mean Values (D) & Secular Variation (dD) -86.0 60.0 -87.0 40.0 -88.0 20.0 -89.0 0.0 Degrees East '/yr -90.0 -20.0 -- D (deg.) -91.0 -40.0 ---- dD ('/yr) -92.0 -60.0 -93.0 -80.0 -94.0 -100.0 1977.0 1979.0 1981.0 1983.0 1985.0 1987.0 1989.0 1991.0 1993.0 1995.0 1997.0 1999.0 2001.0 2003.0

- 98 -

CSY 2002 – Data losses:

Some calibration activities for Antarctic Division caused contamination of short intervals of data, as did the daily sets of calibration pulses. As a consequence data at 0001, 1200-1201 and 1630-1631 on all days in 2002 were omitted from processing.

There was no PPM recording variations in total intensity during 2002. The periods of data loss that follow refer to EDA fluxgate variometer data.

variometer data.						
Jan 01	0543-0604 (22 min)					
Jan 10	1617-1623 (7 min)					

- Jan 27 1006 to 28 / 0242 (16h 37m)
- Feb 09 0500-0854 (3h 55m)
- Feb 10 0229-0236 (8 min)
- Feb 11 0149-0215 (27 min)
- Mar 07 1206 to 12 / 0821 (4d 20h 16m)
- Mar 13 1521-2323 (08h 03m)
- Mar 13 2356 to 14 / 0057 (01h 02m)
- Mar 17 0034-0037 (4 min)
- Mar 20 2226-2244 (19 min)
- Mar 22 0800 to 24 / 2324 (2d 15h 25m)
- Mar 24 2335-2338 (4 min)
- Mar 26 -0700 to 27 / 0400 (21h 01m)
- May 07 2200 to 08 / 0323 (5h 24m)
- May 10 $\,$ 0500 to 11 / 0353 (22h 54m) $\,$
- May 21 0622-0630 (9 min)
- Dec 14 0402-0412 (11 min)

Casey & Davis Notes and Errata (cumulative since *AGR'93*)

There was an inconsistency in the Davis magnetic H component monthly means in the *AGR1996*. Corrected values were given in the *AGR1997*.

The table below summarizes the 2002 monthly digital data acquisition losses, in minutes per month, at the Australian observatories. The first figure refers to the principal 3-component variometers and the second figure (in parentheses) to the recording total intensity instruments. A single figure indicates the same data loss in a month for both instruments. Annual totals and percentage losses are also shown. The figures do not include data that have been excluded from processing such as contaminated data.

For details of events that resulted in loss of data, including the contamination of data subsequently excluded from processing, see the sections entitled *Significant Events* and *Data Loss* contained in the respective observatory descriptions in this report.

2002	ASP	CNB	СТА	GNA	KDU	LRM	MAW	MCQ	CSY
Jan	3 (34,967)	0	1	0	6,013 (0)	0	0	0	1,183
Feb	1373 (380)	0 (55)	0	0	14,705 (3)	0	6	0	416
Mar	0	0	1	0	0	3	0	0	12,730
Apr	0	0	0	0	0	32 (18,047)	2	0	150
May	0	0	0	4199 (4201)	0	0 (13,119)	0	0	1,856
Jun	0	1 (16)	0	0	0	0	0	0	150
Jul	0 (1)	0	0	69	0	0	1088 (2508)	0	159
Aug	0	1 (237)	533 (539)	0 (3)	0	0	0	0	155
Sep	0	0 (271)	0	0	0	0	0	0	154
Oct	0	10 (259)	0	0	0	0	4667 (4662)	0	155
Nov	4	0 (134)	0)	199	0	0	0	2069	150
Dec	0	0 (7)	2 (63)	1181	0	3	0	0	166
3-axis variom.	1,380 (0.26%)	12 (0.002%)	537 (0.10%)	5,648 (1.07%)	20,718 (3.94%)	38 (0.007%)	5,763 (1.10%)	2069 (0.39%)	17,424 (3.32%)
Total field	35,352 (6.73%)	979 (0.19%)	604 (0.11%)	5,653 (1.08%)	3 (0.001%)	31,172 (5.93%)	7,178 (1.37%)	2069 (0.39%)	no PPM

International Quiet & Disturbed Days

2002		Quiet	est day	ys 1 - 5	5	(Quiete	st day	s 6 - 1	0	Mo	st Dist	urbed	days	1 - 5
January	3	5	30	4	6	9	16	29	24K	22	11	10*	12*	19*	13*
February	14	15	23	3	16	24	27	4	19K	25	28	6	5	2*	7*
March	17	28	14	16	27	8	29K	9	15	13	24	5	31	30	19*
April	8	9	26	5	25	6	4	21	10	15	20	18	17	19	23
May	24	5	31	1	25	4	3	17	2	30	23	11	14	27	10*
June	28	27	14	1	15	6	17	7	24	29	2*	10*	4*	8*	30*
July	14	3	15	2	4K	18	13	11	30K	24A	6	17	21	12*	27*
August	6	24	7	5	25	8K	23A	28A	22A	31A	2	21	19	20	1
September	23	25	24	29	20	28	26	16K	27K	15	7	4	8	30	11
October	13	12	11	21A	22A	20A	23A	17A	19A	18A	24	4	1	7	2
November	8	9K	16A	1A	17A	14A	18A	15A	11A	26A	21	3	2	22	5
December	18	17	11	12	13	10	16	9K	31A	15A	27	19	23	20	24

<u>Notes:</u> If any of the selected quietest days were not truly quiet, they have been identified: with an A if the daily Ap index is > 6; or with a K if either one Kp index $\ge 3_0$ or two Kp indices $\ge 3_1$ occurred during the day.

If any of the 5 most disturbed days have an index Ap < 20 they are identified with an *.

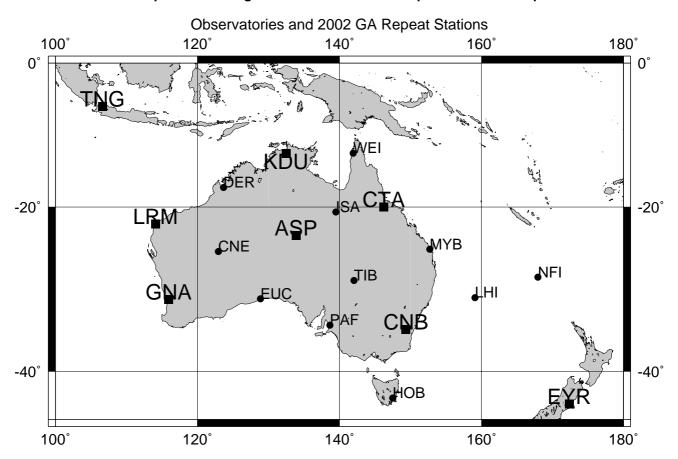
International Quiet & Disturbed Day information was supplied by the International Service of Geomagnetic Indices (ISGI), International Union of Geodesy and Geophysics (IUGG), Association of Geomagnetism and Aeronomy (IAGA), edited by Institut für Geophysik, Göttingen, Germany.

REPEAT STATION NETWORK

GA maintains a network of repeat stations throughout mainland Australia, its offshore islands, and the south-west Pacific region. The repeat stations are usually occupied at intervals of between one and two years to determine the secular variation of the magnetic field. During each three-to-four day repeat station occupation, the magnetic field is monitored continuously with a portable on-site four-component magnetic variometer.

During 2002 a Narod ring-core three-axis fluxgate magnetometer was used to monitor variations in three (nominally orthogonal) components of the magnetic field. The digital output from this magnetometer was recorded as 1-second and 1-minute means with a portable industrial computer running an MS-DOS data acquisition system. A GEM Systems GSM90 overhauser effect total field magnetometer was used to monitor the total magnetic intensity. The digital output from the total field magnetometer was recorded at a sampling interval of 10 seconds.

The magnetometers, acquisition and recording system were all powered by either two 12V batteries and solar panels or 240V ac mains power, depending on the location. Preliminary data processing and analysis was done on-site on a lap-top computer.


The variometer recordings were calibrated to observatory standard with a campaign of absolute magnetic observations

made during each station occupation. Usually from 24 to 30 sets of absolute observations were made on each primary repeat station. Vector field differences between the primary and secondary station at each site were also measured. Azimuths from both primary and secondary stations were checked and total field gradient surveys around each station were undertaken.

The absolute instruments used on the repeat station surveys during 2002 were Elsec 810 DIM, no. 220 with Zeiss 020B theodolite, no. 308887, and GEM Systems GSM90 no. 810881 with sensor no. 81301 (TIB, PAF, EUC, CNE, DER, ISA MYB, HOB) and with sensor 81315 (WEI, NFI, LHI). The GSM90 was also used for total field surveys around each station.

The normal or quiet level of the magnetic field at each repeat station was determined by analysing the calibrated on-site variometer record with reference to the quiet level of the magnetic field derived from a three month period of suitable observatory data.

The average secular variation of the field over the time between station occupations was determined by first differences between the adopted normal field values at the repeat station and the adopted normal field value from the previous occupation of the station.

The distribution of permanent magnetic observatories and repeat stations occupied in 2002

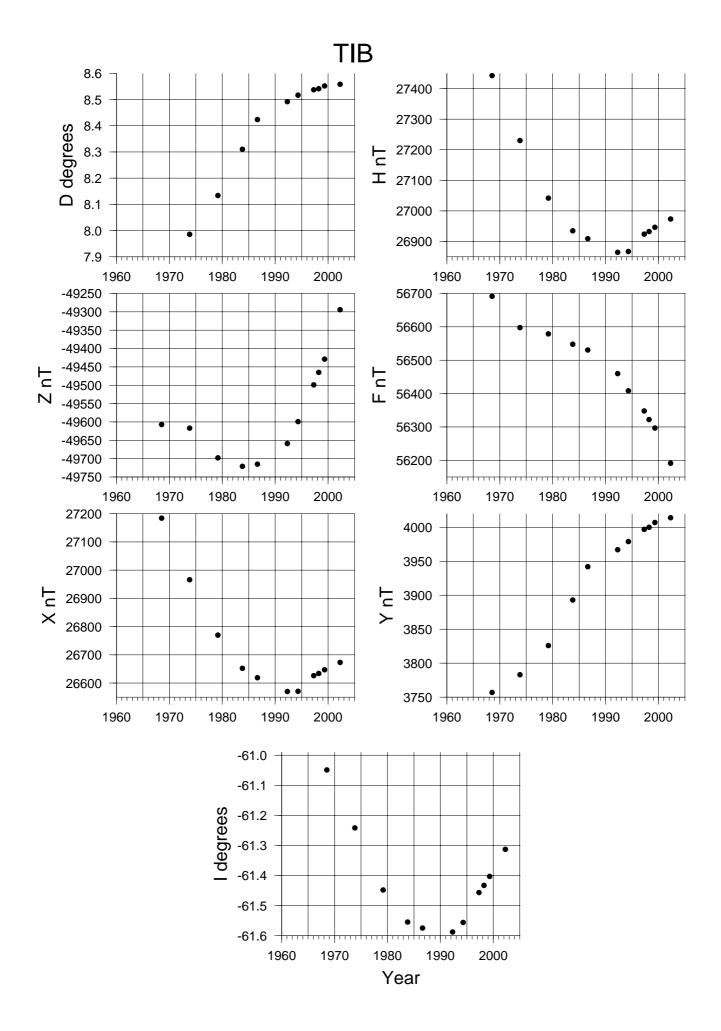
Station occupations in 2002

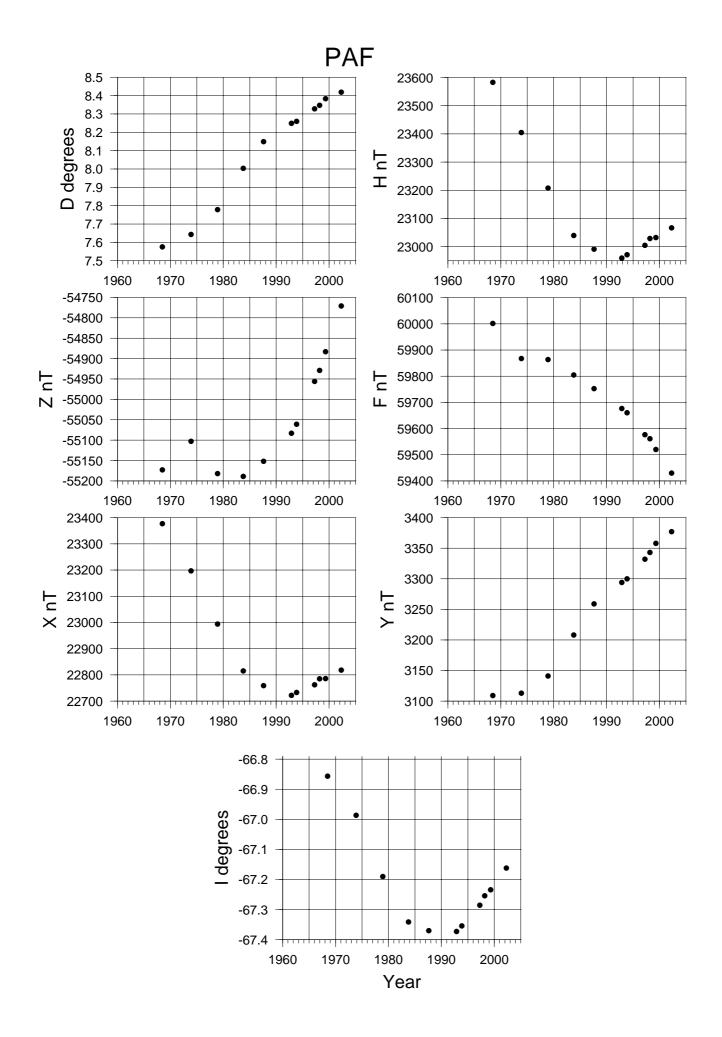
Eleven repeat stations were re-occupied in 2002 during two field surveys, the first in April-May and the second in November. Seven stations were occupied during the first survey: Tibooburra (TIB), Parafield (PAF), Eucla (EUC), Carnegie (CNE), Derby (DER), Mount Isa (ISA) and Maryborough (MYB). Four stations were occupied in the November survey: Hobart (HOB) Weipa (WEI), Norfolk Island (NFI) and Lord Howe Island (LHI). The figure above shows the location of these repeat stations with the permanent magnetic observatories in the region. The results of the 2002 and earlier occupations of these stations are shown in the figures that follow the text.

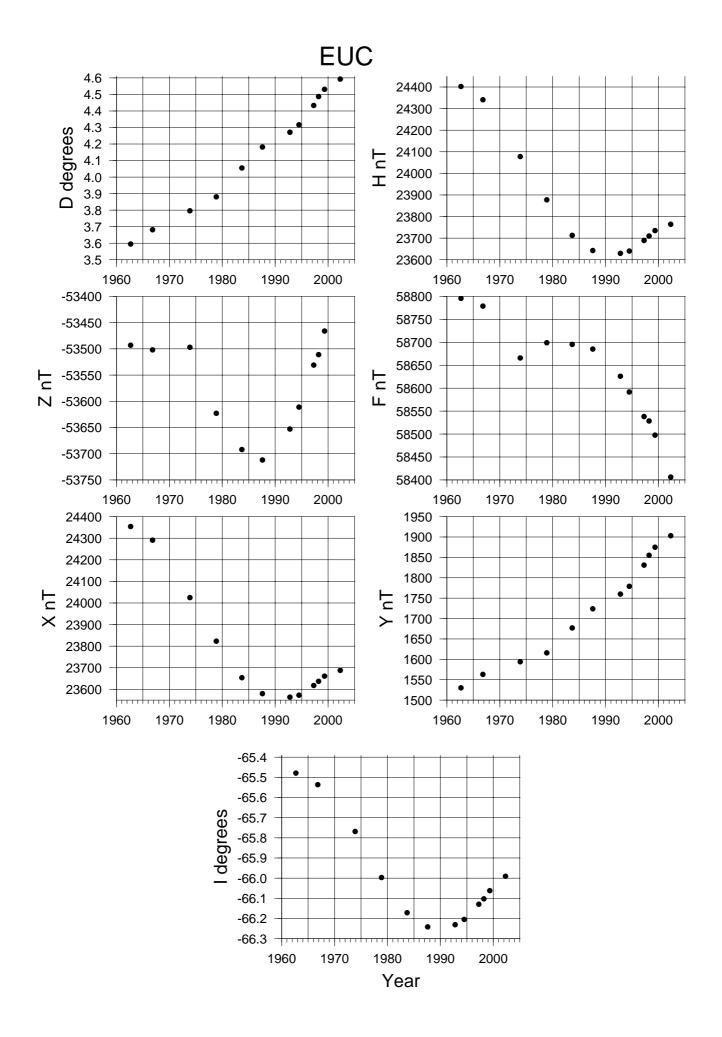
The adopted normal field values at the time of the 2002 occupations and the average secular variation over the interval between the two most recent occupations for each station are shown in the tables below.

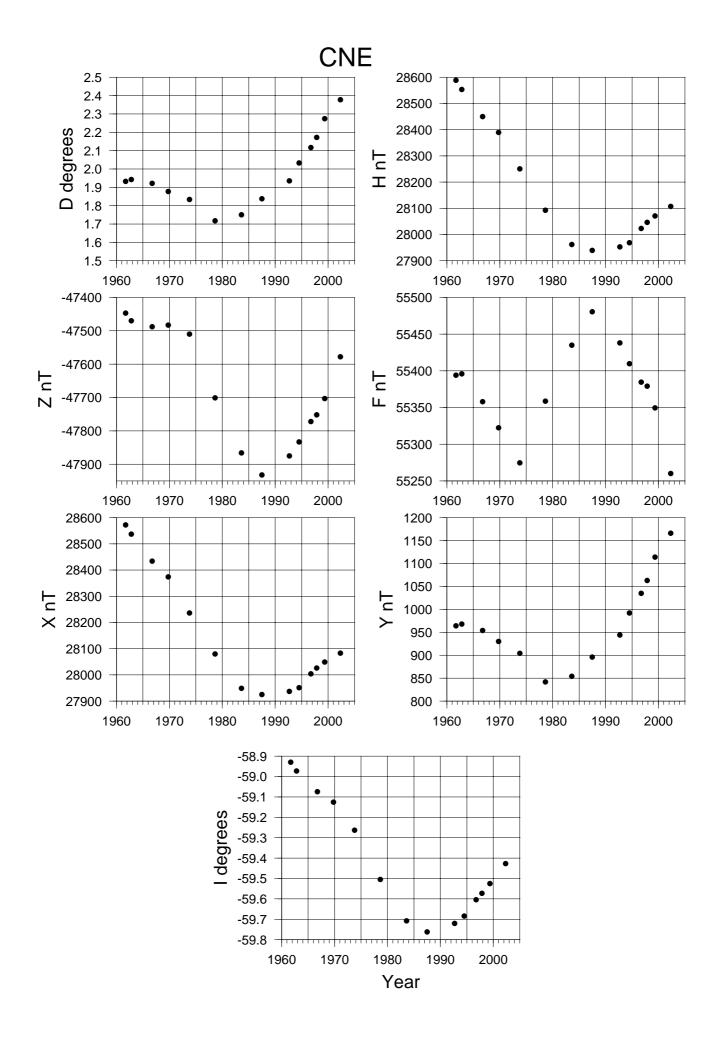
Station (site)	Occupation	X (nT)	Y (nT)	Z (nT)	F (nT)	H (nT)	D	Ι
Tibooburra (A)	2002.04.11	26673	4014	-49293	56191	26973	08° 35.5'	-61° 18.8'
Parafield (C)	2002.04.16	22818	3377	-54771	59430	23067	08° 25.1'	-67° 09.7'
Eucla (D)	2002.04.21	23688	1903	-53353	58406	23764	04° 35.6'	-65° 59.5'
Carnegie (A)	2002.04.27	28082	1166	-47578	55260	28107	02° 22.7'	-59° 25.7'
Derby (E)	2002.05.04	33342	1566	-37362	50101	33379	02° 41.4'	-48° 13.4'
Mount Isa (A)	2002.05.11	31777	3419	-39627	50909	31961	06° 08.5'	-51° 06.7'
Maryborough (D)	2002.05.17	29249	5502	-43236	52489	29762	10° 39.2'	-55° 27.5'
Hobart (H)	2002.11.05	17813	4709	-59277	62074	18425	14° 48.4'	-72° 44.0'
Weipa (B)	2002.11.10	35466	3512	-29608	46333	35639	05° 39.4'	-39° 43.1'
Norfolk Island (B)	2002.11.15	27604	7486	-43001	51644	28601	15° 10.4'	-56° 22.3'
Lord Howe Is. (D)	2002.11.19	25339	6684	-47941	54636	26205	14° 46.7'	-61° 20.3'

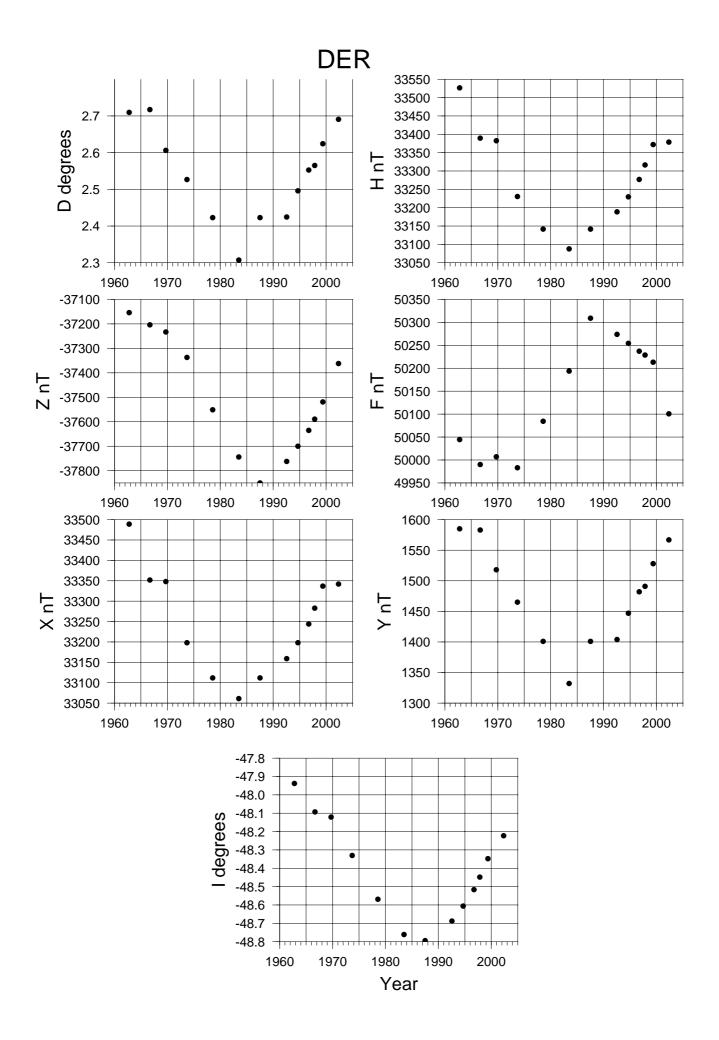
Adopted Main Field Values at Time of Station Occupations

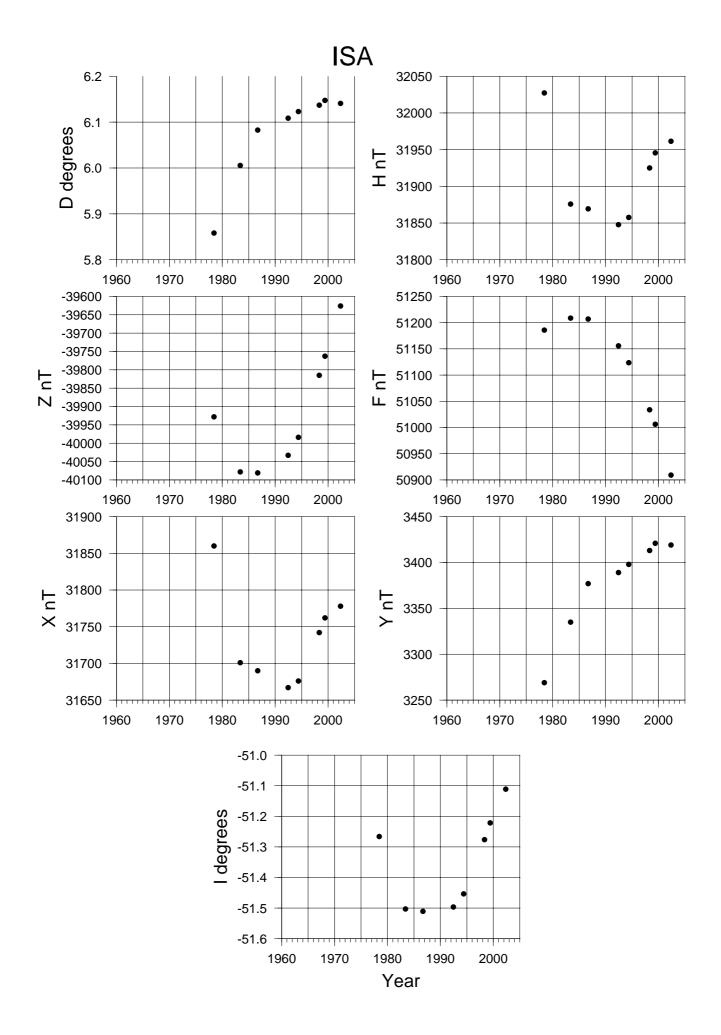

Average Secular Variation between two most recent Occupations

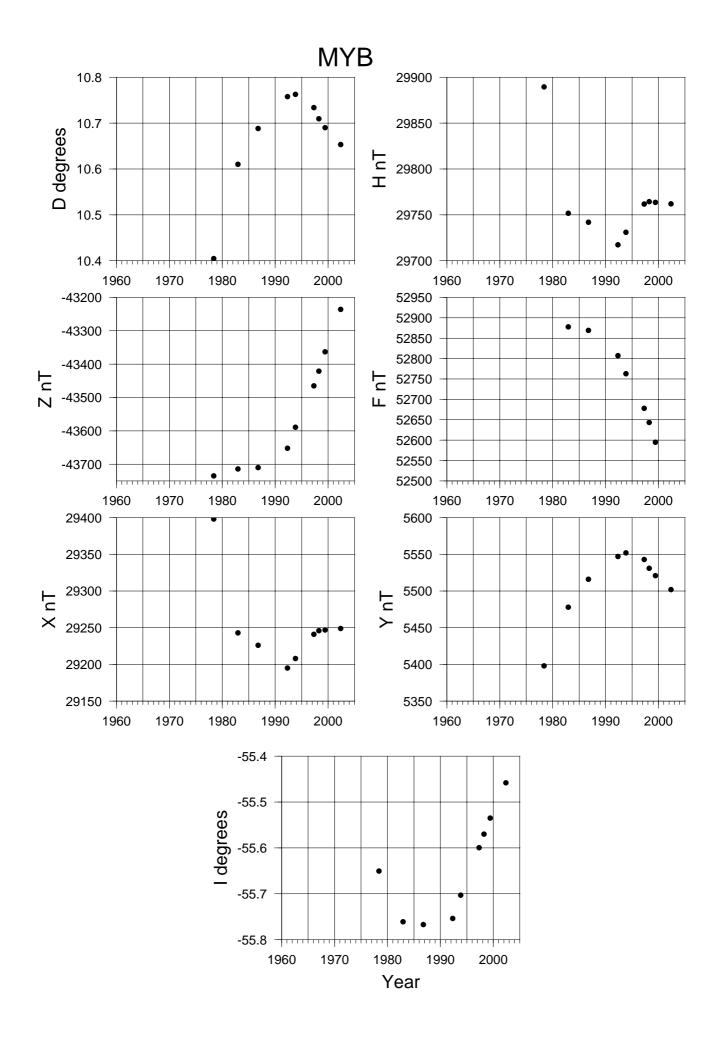

Station (site)	Previous occupation	ΔX (nT/yr)	ΔY (nT/yr)	ΔZ (nT/yr)	ΔF (nT/yr)	ΔH (nT/yr)	ΔD ('/yr)	ΔΙ ('/yr)
Tibooburra (A)	1999.04.24	09	3	46	-36	09	0.2	1.8
Parafield (C)	1999.04.28	11	06	38	-30	12	0.7	1.5
Eucla (D)	1999.05.04	09	9	37	-30	10	1.2	1.4
Carnegie (A)	1999.05.10	11	18	42	-30	12	2.1	2.0
Derby (E)	1999.05.19	02	13	53	-38	02	1.3	2.5
Mount Isa (A)	1999.05.26	05	-01	46	-33	05	-0.1	2.2
Maryborough (D)	1999.06.02	00	-06	43	-36	-01	-0.7	1.6
Hobart (H)	2000.03.25	03	08	27	-24	05	1.4	0.7
Weipa (B)	2000.04.05	-01	-01	39	-26	-02	-0.1	2.2
Norfolk Island (B)	2000.03.30	-14	-11	31	-35	-16	-0.9	0.2
Lord Howe Is. (D)	2000.04.09	05	-02	33	-27	04	-0.3	1.2

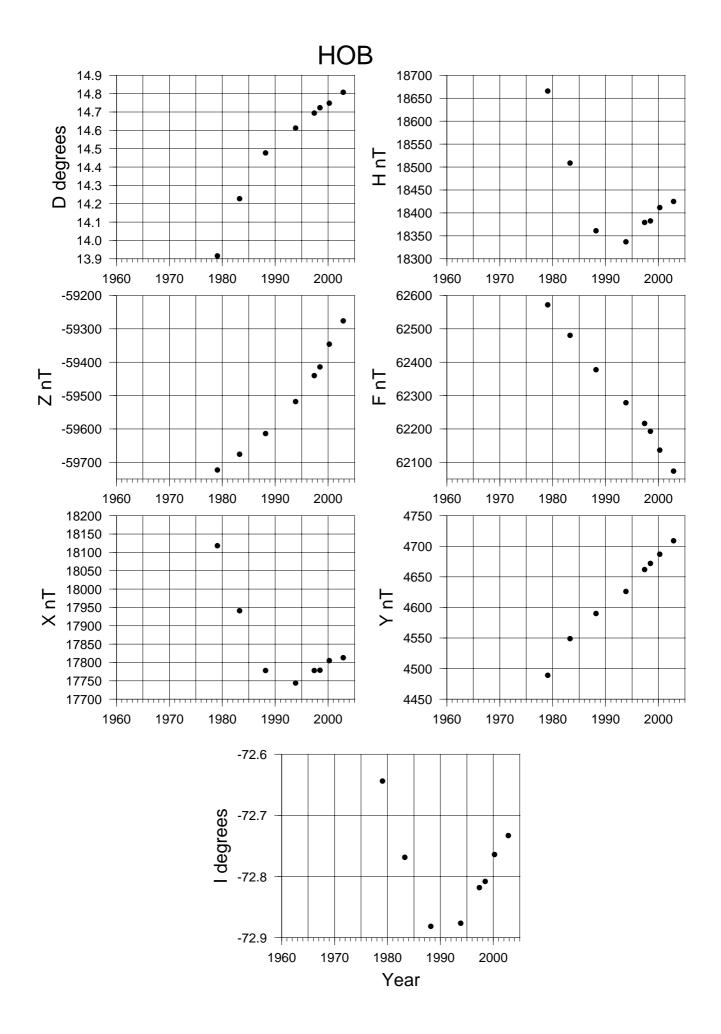

Australian Geomagnetic Reference Field

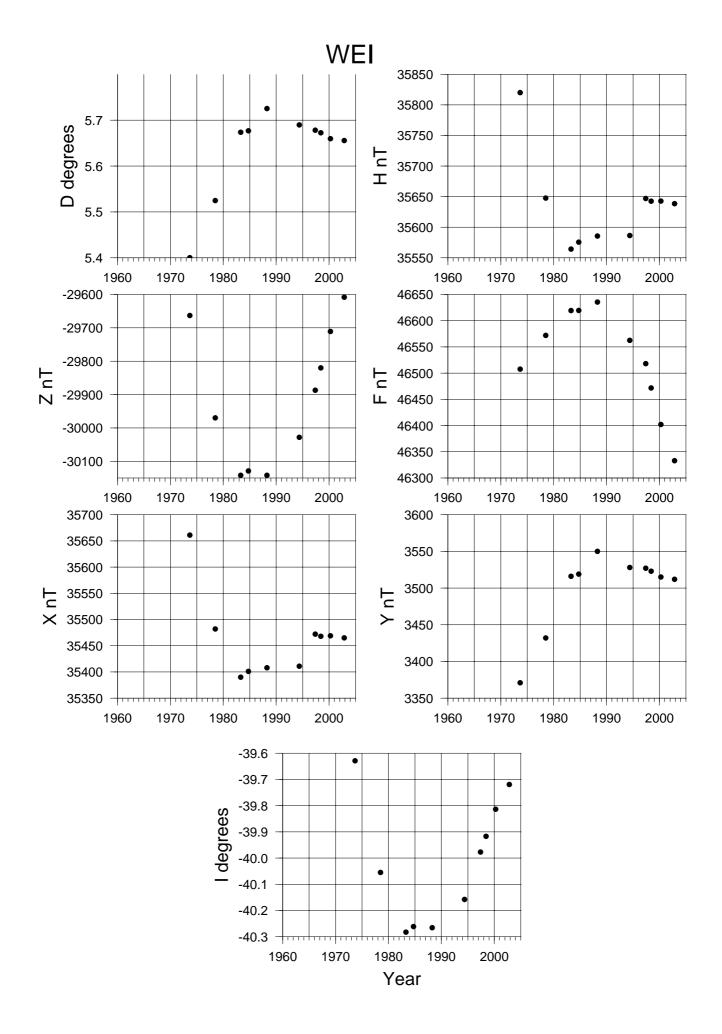

The latest revision of the Australian Geomagnetic Reference Field was for epoch 2000.0 (AGRF00) that was released in 2000 (Lewis, 2000). It is considered the best available geomagnetic field model for direction-finding applications in the Australian region. Charts in each of the magnetic elements X, Y, Z, F, H, D and I of the AGRF00 model are in the *AGR00*.

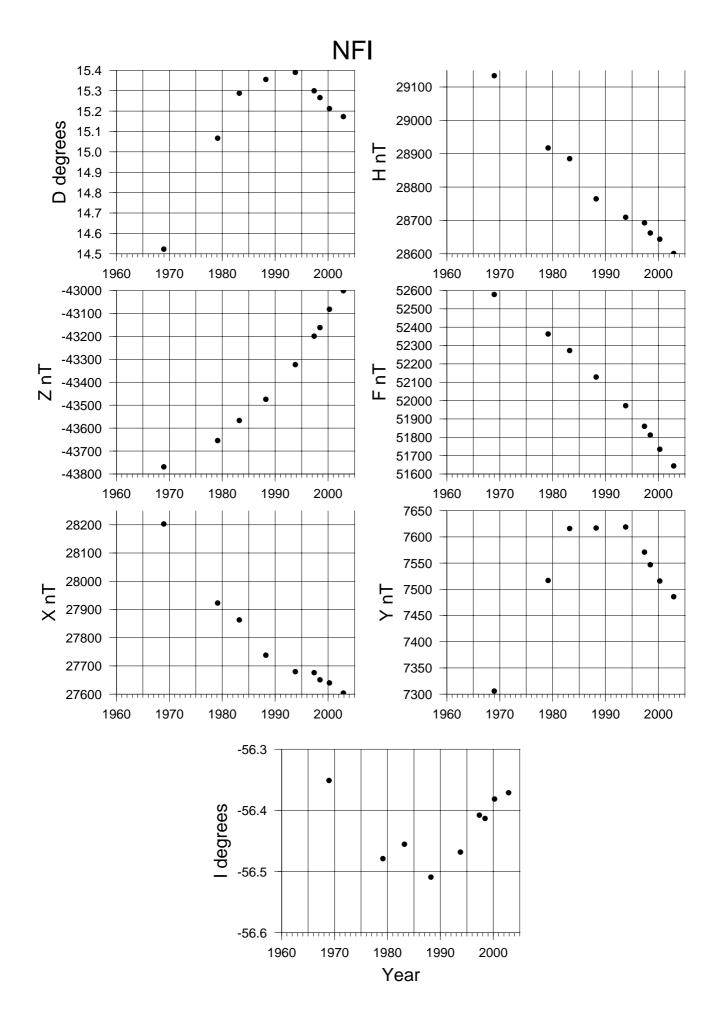

Epoch charts over the region have been produced on a regular basis since 1944. An Australian Geomagnetic Reference Field model (AGRF) has been produced every five years since 1980. These were listed in the *Charts and Models* table that appeared in *AGRs 1993-1997*.

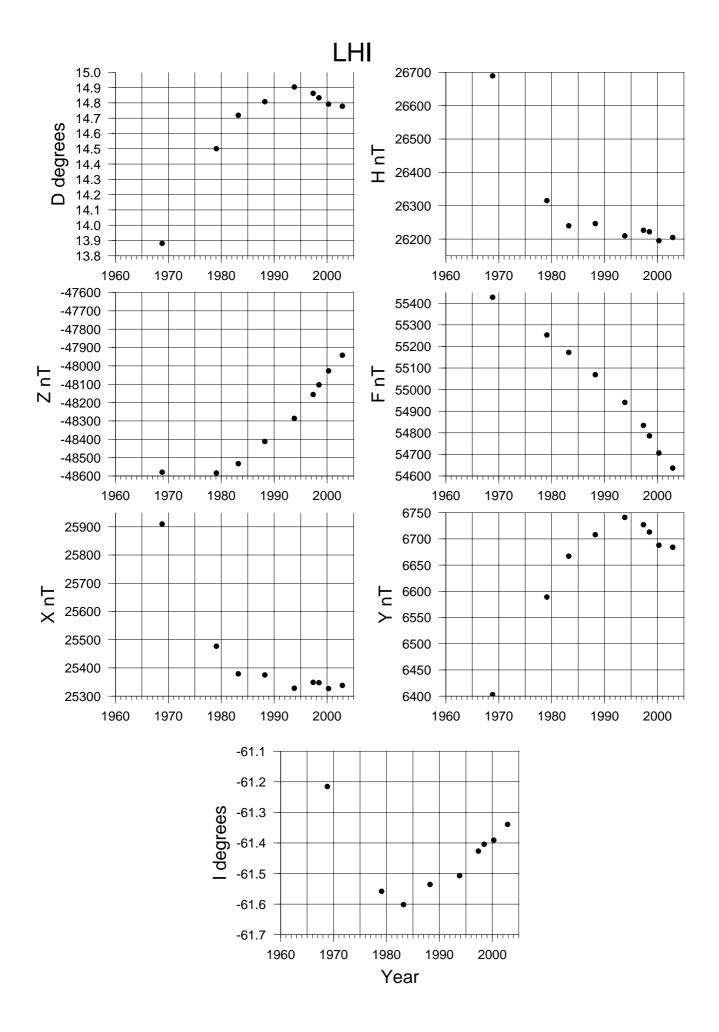












- 112 -

Geoscience Australia

- 'Australian Geomagnetism Report 1993', compiled by A.J. McEwin and P.A. Hopgood. Australian Geological Survey Organisation.
- 'Australian Geomagnetism Report 1994', compiled by P.A. Hopgood and A.J. McEwin. Australian Geological Survey Organisation.
- 'Australian Geomagnetism Report 1995' to 'Australian Geomagnetism Report 1998', compiled by P.A. Hopgood. Australian Geological Survey Organisation.
- Crosthwaite, P.G., 'Calibration of X, Y, Z, F type variometers' *Australian Geological Survey Organisation, Geomagnetism Note*, **1992/24**, 1992.
- Crosthwaite, P.G. 'Using F in X, Y, Z, F type variometers' Australian Geological Survey Organisation, Geomagnetism Note, 1994/16, 1994.
- Crosthwaite, P.G., 'Casey Geomagnetic Observatory Visit, 1998/99 Summer', Australian Geological Survey Organisation, Geomagnetism Note (in preparation).
- De Deuge, M.A. 'Mawson Geophysical Observatory Annual Report 1991' Australian Geological Survey Organisation, Record, 1992/57, 1992.
- Dennis, S.D., 'Macquarie Island Geomagnetic Observatory operational report, 1998' Australian Geological Survey Organisation, Geomagnetism Note, 1998/03, 1998.
- Hattingh, M., L. Loubser, D. Nagtegaal 'Computer K-index estimation by a new linear-phase, robust, non-linear smoothing method', *Geophys. J. Int.* 99, 533-547. 1989.
- Hopgood, P.A. 'Australian Magnetic Observatories' Exploration Geophysics, 24, 79-82, 1993
- Johnson, Peter, 'Mawson Geophysical Observatory Operations, 2000' Australian Geological Survey Organisation, Geomagnetism Note, 2000-02, 2000.
- Lewis, A.M. 'The Geomagnetic Field in the Australian region Epoch 2000' (chart) Australian Geological Survey Organisation, Canberra, 2000.
- Mayaud, P.N. 'Atlas of Indices K' IAGA Bulletin 21, 113pp., IUGG Publ. Office, Paris. 1967.
- McCreadie, Heather '4th Australian Geomagnetism Workshop, Canberra, April 2000 Abstracts' *Geomagnetism Notes* 2000/10, 68pp, *Australian Geological Survey Organisation*, 2000.
- McGregor, P.M. 'Australian Magnetic Observatories' *BMR Journal of Australian Geology and Geophysics*, 4, 361-371. 1979
- McGregor, Peter 'Observatory Geophysics, 1947-1998' Aurora (ANARE Club Journal), Vol. 19, No. 3, 3-21, March 2000.
- Seers, K.J. 'Handbook for Proton Magnetometer MNS2' Bureau of Mineral Resources, Geology and Geophysics, Record 1979/59, 1979
- Trigg, D.F. and R.L. Coles (editors). 'INTERMAGNET Technical Reference Manual 1994', 73pp. INTERMAGNET, 1994.

Geomagnetism Staff List 2002

Name	Classification	Responsibility
Charles E. Barton	GA Level 8	Section Head
Peter A. Hopgood	GA Level 6	Project Leader
Peter G. Crosthwaite	GA Level 5	Digital acquisition, system and software development and maintenance; Kakadu & Gnangara observatories
Andrew M. Lewis	GA Level 4	Project Leader, Repeat Station Survey, Alice Springs & Learmonth observatories
Liejun Wang	GA Level 3	Data-base development; Canberra & Charters Towers observatories
Adrian D. Costar	GA Level 2 (to 14 June 2002)	Antarctic Observatories
Nick Bartzis	GA Level 2 (from 29 Oct. 2002)	Observatories
Bruce Sibson	GA Level 3	Technical support
Owen D. McConnel	GA Level 3	Technical support, Western Australia*

* The Mundaring Geophysical Observatory was closed at the end of April 2000. Only one member of staff (ODM) remained with Geoscience Australia after that time. This officer provided technical support for the Gnangara and Learmonth magnetic observatories as well as the seismograph network in Western Australia.

Non-GA Observers/OICs

Warren Serone	ACRES (contracted by GA)	Alice Springs
Jack M. Millican	Contracted by Queensland University	Charters Towers
Graham Steward	Learmonth Solar Observatory, IPS	Learmonth
Kim Stellmacher	Contracted by GA	Kakadu
Gerard (Hans) Van Reeken	Contracted by GA	Gnangara
Martin Purvins	Technical Officer 2 (on contract) (shared by GA & BoM)	Mawson (2001 observer)
Andrew Jenner	Technical Officer 2 (on contract) (shared by GA & BoM)	Mawson (2002 observer)
Kerry Steinberner	Technical Officer 2 (on contract) (shared by GA & BoM)	Mawson (2003 observer)
Mick Eccles	Technical Officer 2 (AAD)	Macquarie Island (2001/02 observer)
Peter Pokorny	Technical Officer 2 (AAD)	Macquarie Island (2002/03 observer)
Max Paterson	AAD	Casey, 2002

End of Part 2